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ABSTRACT 

Biological cluster of cells may be seen as porous media, 
where the cells are the “solid grains” and the extra-
cellular space (ECS) the “pores”. It is often the case in 
dense clusters of cells that the flow rate of liquid inside 
the extracellular space is negligible in front of the 
molecular diffusion. In the particular case of tumoral 
cells, the extra-cellular path is the tumor interstitial 
matrix (IM) and the apparent (or effective) diffusion 
coefficient (ADC) determines the speed of delivery of 
drugs into the tumor. It is then of great importance to be 
able to estimate the value of the apparent diffusion 
coefficient. We present here a numerical approach, 
based on a Monte Carlo modeling to estimate the ADC 
in irregular, non repetitive morphologies of cell clusters. 
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INTRODUCTION 

Porous media is composed of an arrangement of solid 
grains and interstitial fluid. Biological cluster of cells 
may be seen as porous media, where the cells are the 
“solid grains” and the extra-cellular space (ECS) the 
“pores” (fig 1 and 2). In fact, this is an approximation 
since some diffusing molecules can penetrate the cells 
(cellular uptake) and are thus removed from the extra-
cellular space. 

Fig. 1. Geometry of extra-cellular space from [1]. 
Electromicrograph of small region of rat cortex. The 

ECS is in dark on the picture. It can be seen at the 
bottom right “lakes” where the extracellular space 

widens. 

We place ourselves in the case where the fluid flow in 
the ECS is negligible in front of the molecular 
diffusion. One example is that of tumoral cells , the 
extra-cellular path is called the tumor interstitial 
matrix (IM) [2] and the apparent (or effective) 
diffusion coefficient (ADC) determines the speed of 
delivery of drugs into the tumor [3]. It is then of great 
importance in cancer treatment, and to any treatment 
targeted at dense cluster of cells, to be able to 
estimate the value of the apparent diffusion 
coefficient [4]. It can also be noted that any change of 
the ADC reflects a change in the cells shape and 
arrangement [5]. 

Fig. 2. Cell arrangement in the human skin from [6]. 
The ECS is small and the diffusion is close to the 1D 

case 

Different types of numerical approaches have been 
already examined: homogenization theory [7] and 
Monte Carlo method [8] for regular repetitive patterns 
like squares or triangles. Regular patterns may seem 
sufficient to approximate an average ADC [9],
however the recent use of microsystems to deliver 
drugs in-vivo requires the knowledge of diffusion in 
complex morphologies, specially if one wants to 
estimate the local uptake rates [10] or if any change in 
cell shape and arrangement takes place [7]. So far 
there have been very few investigations for irregular 
and disordered clusters, mostly because of the 
difficulty in describing the geometry. We propose 
here a new algorithm that includes three main 
features: (1) generation of a geometrical cell cluster 
by using the Evolver numerical program [11]; (2) a 
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Monte Carlo approach for calculating the random 
walk of the diffusing species; (3) a geometric tracking 
algorithm for constraining the diffusing molecules 
inside the ECS. 

NUMERICAL MODEL 

In order to investigate the diffusion process in 
irregular patterns of cells, we have set up a model 
based on a Monte Carlo approach. To the difference 
of the existing models, the geometry may be 
composed of different types of lattices of cells, not 
only regular but also irregular and anisotropic, 
mimicking real clusters of cells (fig. 3). These lattices 
of cells are obtained by making use of the Evolver 
code [11]. 

Fig. 3. A lattice of cell obtained with the Evolver 
code. The ECS is “painted” by the plot of the random 

walk of the particles. 

A given set of points delimiting the cells is introduced 
in the Evolver numerical program in order to form an 
initial lattice of cells, each cell being bounded 
initially by linear segments. Depending on line 
tension and cell volume, the shape of the cells 
evolves until convergence to a minimum energy 
arrangement, mimicking real cell arrangement. It is 
assumed here that the cell membranes behave 
similarly to an interface having surface tension. 
Particles are initially placed in a central micro-region, 
simulating the injection point at the tip of the micro-
needle, the diffusion is then simulated by following 
the particles execute random walks inside the ECS or 
IM (fig.4 and 5). 

Fig. 4. Random walk of 2 particles inside the ECS of 
a regular lattice of rounded cells. 

Fig.5. Random walk of 2 particles in the extra-
cellular space of an irregular cluster. 

The displacement (∆x, ∆y) of a particle in the time 
step ∆t is given by the relations: 
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where D is the “free” diffusion coefficient , usually 
given by Einstein’s law: 
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where kB is the Boltzman constant (1.38 10-23 J/K) , T
the temperature (K), η the dynamic viscosity of the 
carrier fluid and RH the hydraulic radius of the 
particle. 

Particles location inside the cluster is permanently 
tracked and the particles are not allowed to cross solid 
boundary. To this point, the difficulty is to locate 
each particle and to detect if it numerically crosses a 
cell boundary; in such a case the particle is 
constrained inside the ECS.  

RESULTS AND DISCUSSION 

We distinguish two cases: that of a cluster with small 
to negligible extra-cellular space and that of a cluster 
with free extracellular spacing (like the lattice of fig 4 
and the real cells of fig.1 bottom right). 
In the case of a two-dimensional array of cells with 
negligible intercellular spacing, the results show that 
there is a direct relation between the ADC and the 
geometrical tortuosity τ of the extra-cellular space, 
whatever the arrangement of the cells (fig.6 and 7). In 
a porous media, the geometric tortuosity is the ratio 
between the shortest length joining one point to 
another one in the fluid and the straight line. In such a 
case, it has been theoretically shown for a regular cell 
arrangement [7] that the ratio of the apparent 
(effective) to the free diffusion coefficient is given by 
Deff /D = 1/ τ2 where τ=21/2 . 
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Fig. 6. (a) Diffusion in a cluster of square cells with 
small intercellular spacing, (b) in an hexagonal 

lattice.

Fig. 7. Diffusion in an irregular cluster of cells with 
small intercellular spacing (scale in microns) 

The numerical results of the present model are in 
agreement with this theoretical relation. In fig. 8, the 
normalized diffusion length  

tD

L

4
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(where L is obtained by averaging the distance of 
each particle between their location at time t and at 
time t = 0). is plotted versus time for the geometry of 
the cell cluster of fig. 3 and 7. At very small times, 
the diffusing particles execute random walk inside a 
small region of the ECS, so that the coefficient β is 
that of free diffusion: β = 1 at t=0. After a short time, 
the particles are constrained to 1D diffusion and 
β  reaches a nearly constant value 
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By definition, the apparent diffusion coefficient 
satisfies 
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From eq. (4) and (5), we find the relation 
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leading to the value τ=21/2.

Fig. 8. Variation of the normalized diffusion distance 
β as a function of time, in the cluster geometry 

defined in figure 3 and 7. 

In anisotropic clusters, tortuosity depends on the 
direction as shown in the figure 9 taken from [1]. 

Fig. 9. Schematic view of diffusion paths in an 
anisotropic cell arrangement. Here λ is the tortuosity 

It can be seen that even anisotropic clusters follow eq. 
(6) if averaging is done upon all the directions, but in 
such a case, it is shown that there exists a different 
ADC for each direction of the plane. 
However, the real situation is often more complex 
(fig.1, bottom right) because the spacing of the cells 
lattice is not uniform and there are intercleft spaces. It 
is shown that diffusion speed may be reduced by 
entrapment when the dimensions of the residual 
spaces are large and the connecting exits sufficiently 
small. An idealized example is that of a cluster of 
round cells. If the dimension of the gaps between the 
cells is decreased, the apparent diffusion coefficient 
can be smaller than the value of eq. (6). In the case 

defined in fig 4., we obtain (fig. 10) 
4

1≈
D
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.

Fig. 10. Variation of the normalized diffusion 
distance β as a function of time, in a cluster geometry 

of rounded cells defined in figure 4. 
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A limiting case is that of a gap width smaller than the 
mean free path of the particle (percolation limit), in 
such a case, the particles are trapped inside the 
intercleft space. 
Another example is given in fig. 11 where we have 
switched a cell to an intercleft space in order to 
compare the diffusion lengths. 

Fig 11. Random walk of particles in the ECS of a 
cluster of cells generated by Evolver. (a) no residual 

space between the cells, (b) after replacing a cell by a 
free space 

CONCLUSION 

Diffusion of biochemical species in a cluster of cells 
has be modelled by a three steps algorithm: (1) 
Evolver generation of cluster arrangement, (2) Monte 
Carlo random walk of the diffusing species, and (3) 
particle tracking to constrain the diffusing species 
inside the ECS. 
The results of the model verify that the apparent 
diffusion coefficient in dense cell clusters with small 
extra-cellular spacing is that of the 1D case. 
However the situation is much more complex in the 
extra-cellular space of irregular and anisotropic 
clusters of cells, specially if there exist intercleft 
spaces. Speed of diffusion can be considerably 
reduced by particle entrapment in the intercleft 
spaces. 
In reality, two conditions are required for an efficient 
drug delivery: a diffusion speed sufficient to reach the 
ECS of all cells in the cluster in a reasonable time and 

a sufficient uptake rate to be sure that all cells are 
concerned by uptake.  
Modeling the cellular uptake requires additional 
developments of the present algorithm. A very simple 
model for the uptake would be to introduce a 
probability of uptake as a function of the number of 
contact of the diffusing molecules on the cell 
membrane.

REFERENCES 

[1] C. Nicholson and E. Sykova; "Extracellular space 
structure revealed by diffusion analysis," TINS; vol 
21 n°5; 207-215; 1998.  
[2] S. Ramanujan, A. Pluen, T. D. McKee, E. B. 
Brown, Y. Boucher, and R. K. Jain , "Diffusion and 
convection in collagen gels: implications for transport 
in the tumor interstitium," Biophys. J.; vol. 83; 1650-
1660; 2002. 
[3] J. Lankelma, R. F. Luque, H. Dekker, W. 
Schinkel, and H. M. Pinedo, "A mathematical model 
of drug transport in human breast cancer," 
Microvascular Research; vol. 59; 149-161; 2000. 
[4] A. W. El-Kareh, S.L. Braunstein, T.W. Secomb. 
"Effect of cell arrangement and interstitial volume 
fraction on the diffusivity of monoclonal antibodies in 
tissue," Biophys. J.; vol. 64; 1638-1646; 1993. 
[5] A. M. Herneth, S. Guccione, M. Bednarski, 
"Apparent diffusion coefficient: a quantitative 
parameter for in vivo tumor characterization, " 
European Journal of Radiology; vol 45, 208-213; 
2003.
[6] M. Martin, "Conséquences d’une irradiation 
ionisante sur la peau humaine, " Clefs CEA, vol. 48, 
53-55,2003. 
[7] K. C. Chen, and C. Nicholson, "Changes in brain 
cell shape create residual extracellular space volume 
and explain tortuosity behavior during osmotic 
challenge, " Proc. Natl. Acad. Sci. USA; vol. 97, n° 
15; 8306-8311; 1999. 
[8] M. J. Saxton, "Lateral diffusion in an archipelago, 
the effect of mobile obstacles, " Biophys. J.; vol. 52; 
989-997; 1987. 
[9] J.J. Blum, G. Lawler, M. Reed, and I. Shin, 
"Effect of cytoskeletal geometry on intracellular 
diffusion, " Biophys. J.; vol. 56, 995-1005;1989. 
[10] A. Szafer, J. Zhong, and J. C. Gore, "Theoretical 
model for water diffusion in tissues, " Magnetics 
Resonance in Medecine; vol. 33 n°5; 697-712; 1995. 
[11] K. A. Brakke, "The surface evolver, " 
Experimental Mathematics, vol. 1, n°2; 141-165; 
1992.

NSTI-Nanotech 2004, www.nsti.org, ISBN 0-9728422-7-6     Vol. 1, 2004                          154


	Untitled
	Untitled
	Untitled
	Untitled



