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ABSTRACT 

Microarray analysis methods can be applied to 
characteristic data obtained from biological sequences in 
matrix form (which could include data from experiments 
or bioassays as well). The rows correspond to a genome 
region (intron or exon) or a protein, the columns to data 
obtained from the genome or proteins under selected 
conditions. In such a dry microarray, tasks like protein 
classification and construction of gene networks are aided 
by the use of various clustering methods applied to the 
heterogeneous data matrix. These methods, suitably 
modified, can also be used for simultaneous multiple 
alignment of all the sequences instead of pairwise or over 
small numbers of sequences at a time (as is the current 
practice). The feasibility of the concept is shown with 
results obtained from the construction and analysis of a dry 
microarray for protein classification. 
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1 GENOMICS AND PROTEOMICS: 

MICROARRAY AND SEQUENCE 

DATA 

Effective and efficient biological data analysis and 
visualization have become necessary with increasing 
amounts of data becoming available through the use of 
rapid sequencing and bioassay techniques. Thus a variety 
of sequence analysis methods have been developed to 
study higher-level properties of biological sequences, such 
as secondary and tertiary structure of proteins, homology, 
and phylogeny [11]. Similarly microarray technology [1] 
has made it possible to obtain expression data for large 
numbers of genes under a range of conditions (such as 
time evolution, samples from subjects both target and 
control, and differing environments), with the technology 
now being extended to proteins as well [6]. A large 
number of algorithms are now available to extract 
meaningful information from the data such as secondary 
and tertiary structure from sequences [13], relationships 
among the genes and conditions [2], classification of 
proteins [7, 9, 10], and construction of gene and protein 
networks [14].  Some of the methods [3, 6, 11] developed 
include multiple alignment, dendrogram analysis, principal 
component analysis, eigengene analysis, biclustering 
(patterned submatrices), support vector machines, singular 

value decomposition, hidden Markov models, and self-
organizing maps, with statistics playing an important role 
in many of them [15]. 

By and large the analysis and modeling of biological 
data is currently centered on specific kinds of data and has 
specific objectives. Thus computational modeling in 
biology is usually driven by the kind of data it is based on 
and has concentrated on an individual goal such as 
sequence analysis at different levels, phylogeny or 
classification, or construction of networks. Recently this 
has given way to computational models that attempt to 
extract patterns from heterogeneous data using various 
probabilistic/statistical [4] and data fusion models [5, 8, 
12] that may include phylogenetic profiles in the form of 
bitmaps.  In this report, a general form of microarray is 
proposed in which heterogeneous data from diverse 
sources can be brought together in a single matrix to which 
a wide range of microarray-based computational 
techniques can be applied simultaneously at all levels: 
sequence, genome, proteome, and cell.  

2 DRY MICROARRAYS AND THEIR 

POTENTIAL APPLICATIONS 

If sequence level data from genomes and proteins are 
arranged in the form of a microarray-like matrix, many of 
the methods used in gene expression analysis can be 
applied to biological sequences as well. Such an array 
could lead to efficient ways of classification as well as 
identification of relationships that may be useful in 
constructing networks at the gene and protein levels. This 
suggests further that by combining heterogeneous data 
from a number of sources in the microarray, a microarray 
can serve as a framework for data fusion. In such a dry
microarray, the columns can be any of a number of 
defining properties of the genome or protein, including, for 
example, 1) subsequences of given lengths, 2) 
subsequences that are similar in some sense, or 3) 
secondary structure motifs.  These are in addition to the 
more conventional types of microarray data such as 
experimental, tissue, and cell cycle data. The wide range 
of statistical and computational methods used in 
microarray analysis can now be applied to the dry 
microarray.  The columns can also be weighted to bias the 
analysis towards properties of interest.  Potential 
applications include: 
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1) Cluster analysis of coding and non-coding regions of a
genome, which can be extended to the study of
relationships between specific sites and upstream regions,
2) Protein classification, which could lead to identification
of protein families based on different criteria on the
columns, and
3) Secondary structure (RNA and protein) and tertiary
structure identification (with column properties based on
motifs in the primary sequences).

3 FEASIBILITY:  EXAMPLE AND 

COMPUTATIONAL RESULT 

The feasibility of the approach is illustrated by
constructing a dry microarray for a set of 200 proteins
randomly selected from the Swiss-PROT database (which 
contains 6115 unique sequences after duplicates are
removed). Hierarchical clustering [15] was used to group
proteins in an unsupervised classification. Use of the
CLUSTER software of Eisen (http://rana.lbl.gov, see also 

[15]) led to Figure 1, which shows a clustered display of
the 200 proteins.  The y axis corresponds to protein, the x
axis to 7872 subsequences of 1 to 3 residues in the sample
protein set. The proteins were randomly selected from out
of 6115 unique proteins (obtained after removing
duplicates from over 13000 listed).  The selected ones
were scanned to obtain all 1-, 2-, and 3-residue
subsequences and their frequencies.  Each frequency was
divided by the length of the sequence and entered into the
dry microarray.  Thus an array entry is the ratio of
subsequence frequency to length of primary sequence.
Light bands (visible as vertical stripes) occur for certain 2-
and 3-residue subsequences as well as for individual
proteins over (ordered) subranges of the subsequences
(visible as short dull horizontal stripes). The vertical bands
are indicative of the presence of multiple alignment among
the proteins mapped by the stripes, while the horizontal
stripes are suggestive of groups of subsequences (typically 
of the same length) occurring in a single protein.

Figure 1.  Hierarchical clustered display of dry microarray of 200 proteins from Swiss-PROT
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Table 1.  Sizes of clusters obtained by K-means clustering 
of 200 proteins from Swiss-PROT 

Clustering was also done using K-means clustering 
(using the same software). Table 1 shows the cluster sizes 
that were obtained with 10 clusters. 

Work is ongoing on data analysis using a wide range of 
column definitions based on one or more of the following: 
sequence data (based partly on scoring matrices like PAM 
and BLOSUM), data based on DNA/protein motifs, 
expression data, and secondary structure data 
(proteins/RNA). 
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