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ABSTRACT

High order parametric resonances and mechanical
studies in a nanowire mechanical system were realized
using oscillating electric field induced oscillation. For the
parametric  resonance studies, resonance at drive
frequencies near 2fy/n, where f; is the nanowire’s
fundamental resonance, for » from | to 4 were observed
inside a scanning electron microscope, and analyzed. Such
resonances were found to originate from the amplitude
dependent electric field force acting on the nanowire and
can be described by the Mathieu equation, which has
known regions of instability in the parameter space. For
the mechanical studies of nanowires, resonances of
nanowires were used to deduce their elastic modulus and
quality factor.
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1 INSTRODUCTION

The extremely small physical dimensions of
nanomaterials imply high sensitivity to external
perturbation, which promises applications in sensing and
micro-/nano- electromechanical systems [1, 2]. As one of
the basic phenomena of any structure, mechanical
resonance has been widely applied for studying the
fundamental mechanics of nanoscale materials and utilized
for making high sensitivity devices [3, 4].

For a freely-suspended, cantilevered simple beam, the
equation of motion of the beam can be described by:
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where u is the displacement, p is the density, A4 is the cross
section area, £ is the Young’s modulus and / is the moment

of inertial. The frequency @; of the i" mode natural

resonance is deduced from the equation:
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W, = ﬂl, VEI/ pA | L= | where f; is the root of the boundary

equation cos /3, cosh f, =—1, and which is the basis of

most techniques for measuring the Young’s modulus of
materials.  An interesting phenomenon arises when a
cantilevered beam is forced to a resonant oscillation.
Parametric resonance describes such a resonance due to a

parametric excitation (a periodically varying coefficient) in
the homogeneous equation of motion [5]. In a single-
degree-of-freedom  mechanical ~ system,  parametric
resonance described by the Mathieu equation is:
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where Y is an angular or displacement variable, u is the
damping constant, and a and ¢ are system parameters. For
an undamped system (x = 0), the theory predicts
instabilities at @ = n*/4 for n = I, 2,..., and regions of
instability in parameter space described by « and & Such
instabilities result in parametric resonances of the system at
drive frequencies of 2wy/n, where o, is the natural
resonance frequency of the system. Though the realization
of high order parametric mechanical resonance in
macroscopic  systems is generally difficult due to
mechanical energy losses and strict conditions applied at
higher n determined by the system parameters; high order
(for n up to 4) parametric mechanical resonance was only
recently observed in microscale MEMS resonators [4].

We report the application of resonance method for the
study of mechanics of nanomaterials and the realization of
up to four parametric resonances for cantilevered
nanowires. A theory for describing the forced vibration
that includes a forcing term proportional to the amplitude of
the resonance was developed, regions of instability were
mapped, and hysteresis in the parametric resonance
response curve was observed.
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2  EXPERIMENT

A four probe nanomanipulation tool (Fig. 1) with 12
degrees of freedom was developed for use inside a field
emission scanning electron microscope (SEM) [6-8]. This
tool is capable of nanometer resolution motion, and free-
space manipulation/characterization of nanostructures by
the four probes controlled by the precision manipulators.
For the study of the resonance mechanics of nanowire, Fig.
2 shows the schematic of the experimental setup. A dc bias
and an ac signal from a sine wave signal generator, which
generates the oscillating electric field, are applied between
the nanowire (attached on one electrode through
manipulation) and a counter-electrode. By tuning the
frequency of the ac signal, the cantilevered nanowire can be
excited such that maximum amplitude is achieved when the
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Fig. 1: Schematic of the multiple degrees of freedom
nanomanipulation platform for use inside a scanning
electron microscope.
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Fig. 2: Schematic of the experimental setup inside the
SEM showing the resonating nanowire under the applied
dc bias and ac drive signal. The top-right hand inset
shows the geometric relation between the nanowire and
the drive electrode along the plane of the nanowire
vibration, the bottom-left hand inset shows a
representative boron nanowire in resonance.

frequency of the drive signal matches the mechanical
resonance frequency of the nanowire. We have
successfully applied such a technique to induce the
resonance of carbon and BN nanotubes, B and Si
nanowires, and Ga,O; nanowire and nanoribbon (Fig. 3).
Quality factor as high as 3000 has been obtained from B
nanowire resonator; and it falls between 100 and 600 for
multiwalled carbon nanotube.

A computerized data acquisition system for acquiring
the amplitude versus frequency response curve was
developed. In the acquisition, the SEM beam control is set
in line scan mode across the nanowire. The SEM line scan
shows a narrow peak with a width roughly equal to the
diameter of the nanowire when the nanowire is essentially
stationary; it shows a broader plateau when the nanowire is
driven into oscillation, and the width of the plateau
corresponds to the amplitude envelope of the oscillation.
The sine wave signal generator is programmed to tune the
drive frequency at fixed step (1Hz to 10 kHz depending on
the frequency resolution needed for the response curve),
and at each step, the line scan signal is acquired and
processed to obtain the amplitude of the driven nanowire at
that driving frequency.  Alternatively, by setting the beam
control for the SEM in “spot mode” so that the beam scan is

Fig. 3: Modes of resonant oscillations of cantilevered (a
and b) and clamped (c) individual multiwalled carbon
nanotubes.

stopped, a periodic signal from the SEM detector output
can be acquired when the laterally resonating nanowire
traverses the stationary electron beam. This technique
provides a direct measurement of the real oscillating
frequency and potentially phase of the nanowire.

3 THEORETICAL MODEL FOR THE
FORCED OSCILLATION

The electric field-induced resonance of a cantilevered
nanowire can be described as a nonlinear system with
forced vibration. With a dc voltage V. and an ac drive
signal V,.cos(<2), the forcing term F(x,t) (where x is the
distance along the nanowire) is F(x,t) =

-0(x, z)deC (1 B2 242 cos Qi + £2/2cos mr), where

B=V./V4, the angular drive frequency (2 is related to f
through 2=277, and Q(x,t) is a function that depends on the
geometry and electrical parameters of the system. For
small displacements of the nanowire, Q(x,#) can be
approximated by an expansion on y(x,#) (the displacement
of the nanowire): O(x,1) =0, (x)+ O, (x) y(x,1) + O(yz) .
The electric field force on a segment of the wire is a
Coulomb force.

We include the effect of the electric field force to first
order in y, and the equation of motion for the beam is:
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where p is the volume density (2460 Kg-m™ for boron), 4 is
the cross sectional area, ¢ is the damping coefficient, E is
the bending modulus, and / is the area moment of inertia of
the nanowire having a length L. Integrating over the beam
length L to remove the x dependence gives an equation for
the time dependence of each natural resonance mode:
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where w, = ;(l_z E[/pA,y,. = [ f@dx, (note that @; is
)

the natural angular frequency of mode /). Equation 4 has
been made non-dimensional by scaling time with 27 and
length with L. This equation has the form of the damped
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Mathieu equation (as described in Eq. 2), with
parameters: i = ¢/ pAQ, a = Q7 [w] +q, V] l(pAy,)] and
&= Q_zﬂqu

[,f /(pA 7,)- The vibration in our experiments
is the fundamental mode (i=0) resonance, for which &y =
1.875/L and y = 0.783. Since the Mathieu equation has
points of instability at values of a given by n*/4, according

to Eq. 4 this occurs for values of the driving frequency

. 2 3 3
given byQR = “\/w(; +q,Vi /(pA%.) . Note that these
n

resonances are not exactly proportional to the natural
frequency @y, but instead are shifted by a small amount
dependent upon ¢, and V.

4 RESULTS AND DISCUSSIONS

Figure 4 shows the acquired amplitude-drive frequency
curves of three parametric resonances centered at drive
frequencies fof 0.453 MHz (close to 2/,/3), 0.674 MHz (the
resonance frequency of the fundamental mode f;) and 1.386
(close to 2fy) for a boron nanowire [9] (The Young’s
modulus of the nanowire was estimated to be 230 GPa
according to Eq. 1) as shown in the left hand inset in Fig. 4.
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Figure 4. The amplitude versus drive frequency curves
acquired at different V. and V. The left hand inset
shows the SEM image of the nanowire (11.6 um long
and 67 nm in diameter) and the drive probe tip (placed
1.5 wm away from the free end of the nanowire). The
right hand inset shows the comparison between the
drive resonance frequencies (square) obtained from the
experiment and the curve according to the theory.

The resonance at /= 0.329 MHz (close to fy/2) excited
manually with V,= 0 V and V,. = 1V using another signal
generator was also visually observed but the response curve
was not acquired because the frequency was out of the
range of the computer-controlled signal generator (0.4
MHz-1.1 GHz). A comparison between the experimental
data (represented by solid squares in the plot) and the curve
according to (2 = 2@y/n is plotted in the right hand inset in
Fig. 4, and shows an excellent agreement. The SEM spot
mode method described above was used and found that the
nanowire oscillated constantly near its fundamental
frequency f; with the above four different drive frequencies,
which is a characteristic of a parametric resonance system.
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Figure 5: (a) Stability diagram for the parametric
resonance n=1 of'a boron nanowire having a diameter of
114 nm and a length of 10 wm. The dashed lines
indicate the boundaries according to the theory. (b)
Amplitude-frequency response curve obtained from
modeling for the parametric resonance n=1 describes in
Fig. 4. The arrowed lines indicate the locations of the
possible jumps. The inset in (b) is the experimental
result showing the hysteresis for the nanowire described
in Fig. 4 acquired at V;,=17.6 V and V,=550 mV.

Regions of mechanical instability in parameter space are
expected as a result of the Mathieu equation. Figure 5a
shows such a stability chart for a nanowire having a length
of 10 um and a diameter of 114 nm for its parametric
resonance n=1. The plot was obtained by acquiring 42
amplitude versus frequency response curves at 42 pairs of
Vi and V. voltages. From each acquired response curve,
two threshold frequencies, one at the jump up point such as
the point 4 and another at the smoothly rising up point such
as the point B in the response curve as shown in Fig. 5b,
were determined. The jump down event such as at the
point C in Fig. 5b is arbitrary depending on other high order
perturbations in a large amplitude oscillation system, and is
not related to the region of instability defined by the
parametric resonance equation. The V., V,. and threshold
frequencies were then converted to ¢ and & according to
formulas derived in the paper, which resulted in the upper
and lower boundaries for the instability region as shown in
Fig. Sa. The plot clearly shows a “tongue” shape for the
unstable region confined between the two linear boundaries
as predicted by the Mathieu equation. The dashed lines in
Fig. 5a are the predicted boundaries from the theory for
comparison. Mapping the stability chart for higher-order
parametric resonance, such as for n = 3, is difficult due to
the higher excitation voltages needed for such mapping.
Applying higher ac and dc voltage significantly disturbs the
electron beam in the SEM imaging and thus the data
acquisition.
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Fig. 6: Hysteresis in the amplitude versus drive
frequency curve for a hardening nanowire mechanical

system. (a) Experimental result; (b) the corresponding
modeling result.

Hysteresis is seen from the frequency response curve for
the parametric resonance n=1 of the nanowire at constant dc
and ac bias as shown in the inset in Fig. Sb for a softening
system and in Fig. 6a for a hardening system. Two curves
acquired from a forward frequency sweep and from a
backward frequency sweep are displayed. “Jump up” at
point 4 and “jump down” at point C between the upper and
lower branches of the response curve are clearly resolved,
indicating that there is a portion of the response curve
between points 4 and C that is unattainable.

This hysteresis can be understood by considering the
nonlinear force-deflection behavior of the nanowire. In
parametric resonance, unlike resonance of a simple mass-
stiffness system, finite damping alone is not sufficient to
keep the amplitude from growing to infinity as time
increases; rather, the nonlinear behavior of the system must
provide the upper limit to amplitude growth.  To
demonstrate this, we consider an undamped version of the
Mathieu equation: a’:u/dr2 +(a+2&cost)u ¥ cou’ =0 ,
where ¢ is assumed to give the relative size of a cubic
nonlinearity in the system, and the negative sign is for a
softening system and the positive sign for a hardening
system. Using a multi-time expansion [10] in the small
parameter &, and considering values of the parameter a near
1/4 (so that a=1/4+¢a,), we derive periodic solutions having
the form w=Apcos(#/2+¢). Three solutions for the steady-
state amplitude exist for the softening mechanical system:

A4, =0, 4, - a, £1. The presence of multiple stable

Vaa

solutions for a;>-1 explains the hysteresis seen in the
experiment near a=1/4. For a hardening system,

A, =0, 4, :%,/—a| +1. Fig. 5b and Fig. 6b shows the
3a

response curve obtained according to these solutions
obtained from such modeling.

A parametrically driven cantilevered nanowire can be
designed to operate near the boundary conditions according
to the stability chart, and could provide very effective
response to either individual molecule or nanoparticle
attachment by threshold transition for making "super-
sensitive" sensors. A parametric resonator has also a
unique feature that a normal resonator does not have.
Parametric resonances only occur when the parameters lie
in a particular range. For the case reported in this paper,
three adjustable parameters define the stability chart: the ac
and dc voltage and the frequency of the oscillating electric
field.
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