Mathematical Modeling of Water Management in PEM Fuel Cells

P. Berg*, K. Promislow*, J. Stockie**, B.Wetton***

* Simon Fraser University
Dept. of Mathematics, Burnaby BC Canada, kpromisl@sfu.ca
*# University of New Brunswick
Dept. of Mathematics and Statistics, Fredericton NB, Canada, stockie@math.unb.ca
*#% University of British Columbia
Dept. of Mathematics, Vancouver BC, Canada, wetton@math.ubc.ca

ABSTRACT

The efficient operation of polymer electrolyte fuel cells
requires effective management of gas, ion, and liquid trans-
port. The catalyst layer forms an interface between the poly-
mer electrolyte and the gas diffusion backing which is a cru-
cial nexus for reaction and transport. The dynamics in this re-
gion are controlled by nano-scale factors of wettability, pore
size, and water uptake. We outline a model of heat and mass
transport which displays the crucial role of these interface
kinetics in the overall fuel cell performance.

Keywords: PEM fuel cell, two-phase flow, interface ki-
netics

1 Introduction

Water management is central to the effective operation
of polymer electrolyte (PEM) fuel cells. The accurate mod-
eling of liquid water transport requires understanding of all
aspects of the complicated fuel cell environment, in particu-
lar the heat and mass exchange which occurs at the catalyst
interfaces between the gas diffusion electrodes and the PEM.
The treatment of these interface regions with a hydrophobic
catalyst ink is essential to efficient fuel cell operation, but
renders them very complicated to model mathematically. We
will argue that the non-equilibrium kinetic interface condi-
tions (Butler-Volmer equation, water uptake by membrane,
dissolution of Os into membrane) are dominant factors in
fuel cell operation. These non-equilibrium kinetics are very
sensitive to the nano-scale composition of the catalyst ink
and of the membrane and its pores, in particular on surface
wettability and pore size, which in turn are sensitive to the
presence of liquid water. Water transport within the polymer
electrolyte membrane (PEM) is governed by nano-pores and
ion concentrations, and is subjected to concentration gradi-
ents, capillary pressure, and electro-osmotic drag which de-
termine water transport in the bulk of the PEM. While the
proper modeling of these bulk forces is hotly debated, there is
even less known about the kinetic interface conditions which
govern the water up-take into the PEM, and of water release
from the PEM to the surrounding catalyst and gas-diffusion
layers.

For brevity we present a model of the cathode gas diffu-
sion layer (GDL) and the PEM only, focusing on two-phase
flow and interface kinetics.

2 Cathode GDL Model

The unknowns are C, Cs, C3, the molar concentrations
of oxygen, water vapor, and nitrogen, 1" the temperature, and
[ the liquid water volume fraction. The molar concentrations
are related to densities py, = M Cy where M} is a constant
molar mass of the k’th species. The mixture density, p is then
given by

3 3
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We will eliminate the molar concentration of nitrogen, Cs,
in favor of the mixture density p. Conservation of mass and
energy takes the following form
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where C is the molar density of liquid water, U, and U; are
the gas and liquid velocities respectively, I" is the conden-
sation rate, h,, is the heat of vaporization, and the averaged
quantities are computed as

f=01- e)f| soriq T — B)f] gas +eif| liquid

The quantities Jj denote the diffusive fluxes associated to
gradients in densities, while the total flux Ny, = Cp U, + Ji
contains the contribution to the flux arising from the gas ve-
locity Uy . The diffusive fluxes are computed from the Maxwell-
Stefan equations, see equations (4-5) of [4]. We have as well
the constitutive relations. Namely the ideal gas law

P, = CRT, 7
and Darcy’s law for the gas
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and the liquid

Kk,

Uy = —%VPZ, 9)
phase, where the gas and liquid relative permeabilities are
given by k.o (8) = (1 3)% and k,; = (* where the reduced
water saturation is given in terms of the immobile water frac-
tion 3, as 3 = f:g The liquid pressure P is related to
the gas pressure P, by the capillary pressure, P, = P, — P,
which models the wettability of the pores of the gas diffusion
electrode

P. = | cosb|(e/K)E T (B). (10)

Here + is the surface tension, # is the contact angle, and for
the capillary function ./ we take the van Genuchten function

[6]

51/ 1/ay
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where a; = 1 — 1/a; and typical values are b = 5 and

a1 = 10. We complete these equations by specifying the
condensation rate I as a function of the oversaturation

T = { Hg_(l_ﬁ)(C? —Csat(T)7 CQ ZCsat(T),
H(; (ﬁ(CQ - Csat (T)> 02 S Csat (T)7
(12)
where the saturation concentration of water is given in terms
of the saturation pressure Py, by Csay = Paat RT.

3 The Polymer Electrolyte Membrane

The main feature of a proton exchange membrane is the
equilibrium between the local water content, the protons bound
to the fixed charge (acid) groups, and the mobile protons dis-
solved in the water, which form complexes with surrounding
water molecules. The ion exchange equilibrium arises from
the reaction

SOz H' + Hy0 = SO; + HY (Hy0).  (13)

We suppose that the reaction (13) reaches equilibrium on the
time scales of interest in a fuel cell [3]. In this case the con-
centration of bound protons ¢, = [SO3H|/a as normalized
by the acid weight, a = [SO3] + [SO3H], is determined by
by the hydronium concentration ¢4 = [H307"|/a and the
local free water content, ¢,, = [H20]/a

hCuwKe(T) = e (1 — ¢p), (14)

where the equilibrium constant depends sensitively on tem-
perature

Hy

K (T) = Kyexp {-——7—%— (% - '2%5)} . (15)

Under the assumption of local electro-neutrality (LEN)
we have the relation

l—cy—cy =0, (16)

which together with (14) relates the ion concentration to the
water concentration and temperature

Kecu w)
C+(CwaT>:'— ec +\/(Kec > + Kecy, (17)

2 2

The membrane total water content determines the free water,
the bound water and the hydronium concentration at given
temperature.

The transport equations in the membrane are determined
by a dusty-gas model based upon the Maxwell-Stefan equa-
tions for the flux. Due to the low permeability of the mem-
brane we will neglect pressure gradients, and in particular
capillary pressure. The fluxes of free water and hydronium
are governed by the Poisson-Nerst-Planck equations. The
electro-osmotic drag term is incorporated in the assumption
that only hydronium and free water are present in the mem-
brane and that any frictional effects between the two are neg-
ligible. Effectively, this yields a drag coefficient of N = 1
and the following equations for the hydronium and free water
flux

Il

- <—‘D+VC+ — ‘%D+C+V¢> O7 (18)
+ (=DyVen) = 0. (19)

The diffusion coefficients

Il

Di(cw,T) 1.6 - 1078 exp(—1683/T) (%”—) (20)

Du(co,T) = 211077 exp(—2436/T) (%”) 21
are assumed to increase linearly in the water content, re-
flecting in a very simplified manner the water-ion interaction
within the membrane nano-pores as well as the change of
membrane morphology and pore structure under water up-
take. Since ¢, and cy are correlated as shown above, (18)
and (19) constitute two equations for the membrane poten-
tial ¢ and the free water concentration c,,.

4 Interface Conditions

A fundamental role is played by the interface conditions
which describe the non-equilibrium exchange of mass and
energy between the gas-diffusion electrode and the polymer
electrolyte membrane. The exchange occurs over the catalyst
layer, which we take to be vanishingly thin.

4.1 Electro-chemistry

We treat the catalyst layer as an interface where the cur-
rent generating reaction takes place, as modeled by the Butler-
Volmer equations

7 o, co \* aF agF
T F \ o CXp\ o e eXp\ ~ o e
(22)
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Assuming first order reactions, we take e, = 1. These equa-
tions permit one to define the cathode over-potentials 7). as a
function of the current, I, which is related to the proton flux
I=J,/F

Potential Jumps with Current

X, =0 X=ay X,
Cathode Membrane Anode

Graph of the potential ¢ as a function of position z2
through the MEA. The equilibrium jump in potential
at the boundary layers are given by the half-electrode
potentials, F, and E. respectively. When current is
drawn, the jumps are reduced by the over-potentials
7 and 1. The useful potential is given by U = E, —
Ne—Na—A¢, where the last term describes the resistive
losses in the membrane.

The boundary layers in the potential at the catalyst layer
are modeled as jump discontinuities. In the remainder of the
domain we have continuous potentials ¢. in the electrically
conductive region of the cathode and ¢ in the membrane.
The open-circuit half-reaction potentials £, and E, are re-
lated to the double layer of charge formed at the catalyst
surface when the electrode is supplied a reference amount
of reactant and no current is drawn. The overpotentials are
kinematic conditions describing the response of the potential
when electric current is drawn (reducing the double layer)
and the reactant is consumed. Boundary conditions for the
membrane potential ¢, take the form

925(331,.12 = 0+,5E3) = E.- Tle,s (23)
d(x1,22 =a,,,x3) = U—FEq+1na. (24)

The value of U is the “driving force” for the fuel cell model,
which stimulates consumption of reactants and generates cur-
rent. Prescribing U = 0 yields homogeneous solutions. Pre-
scribing the voltage is a simplifying step, since our reduced
model does not include an electrical connection between the
cathode and anode.

4.2 Mass flux

In the cathode, the reaction stoichiometry prescribes an
oxygen flux out of the cathode GDL equal to one-fourth the

electric current,
17
Ny -7l=— . 25
1 = (25)
Since there is no consumption of nitrogen in the catalyst layer
we have the no-flux boundary condition

Ns -t = 0. (26)

The flux of water from the cathode GDL into the mem-
brane at the cathode catalyst is dependent upon water produc-
tion and the hydration level of the membrane. The equilib-
rium total water content of Nafion 117 membrane in contact
with water vapor was found to fit the form, [7],

¢t (r) = 0.043 + 17.81r — 39.85r2 +36.0r°,  (27)

where the relative humidity =, in the GDL is given by

P,
Psat (T) ’

T =

(28)

and P, = C9oRT is the partial pressure of the vapor at the
catalyst interface and Psat(T) the saturation pressure of wa-
ter in the GDL as a function of temperature. However, if the
membrane is exposed to liquid water, then the equilibrium
value jumps to ¢, = 22.8, an effect sometimes referred to as
the Schroeder paradox [3].

The appropriate boundary condition for water at the in-
terface is a kinetic condition which describes the dynamic
restoration of equilibrium in the face of water production
and flux. Experiments show that the time scale on which the
membrane assumes this equilibrium value ¢, is compatible
with the time scale on which water is produced in the cata-
lyst layer and carried away from the catalyst layer by electro-
osmotic drag and diffusion within the membrane [1]. We as-
sume a first order relaxation and take a Robin condition for
the water flux between the cathode GDL and the membrane,

Ny - = y(ew — (), (29)

where ¢, is the total membrane water content. Comparison
with water-uptake data for membranes leads us to a value
of v = 107%m/s. If the dimensionless membrane water
content approaches the maximum value ¢,,, then the incom-
pressibility of the membrane implies that water pressure can
no-longer be neglected and any further water produced will
be forced out into the channel. This could be modeled by a
~ = 7y(cy) which changes dramatically at ¢,, = ¢jpr. More-
over, if the membrane is exposed to liquid water then the
equilibrium value will also behave non-smoothly.

On the cathode side of the membrane, the flux of water
N, is then given by

31 -7
2F

Noy 7= =(cw = €y (r)) = (30)
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where we balance water production against the water ex-
change with the GDL. The normal 7 points from anode to
cathode.

Note that our boundary conditions implicitly assume all
the water which enters or leaves the gas diffusion electrode
does so in a vapor state. Indeed it is difficult to predict the
state in which water which leaves the membrane, however
phase change is permitted in the gas diffusion electrode, and
the water is free to assume its thermodynamicly appropriate
state.

A boundary layer also exists in the mole fractions be-
tween the air phase in the gas diffusion layer and the lig-
uid phase in the membrane. This is most important for the
oxygen concentration, which enters into the Butler-Volmer
equations for the over-potential. The thermo-dynamic rela-
tion, called Henry’s law [5] is given by

RT
=g O

where ¢, is the equilibrium concentration of oxygen in water
given a gas oxygen concentration of Cy. Henry’s constant, H
is approximately 2 x 10° atm cm 3/ mol . However the
proper boundary condition for the oxygen concentration in
the membrane is a kinetic one, relating the interface concen-
tration to the rate of oxygen consumption,

I-7

vH(CO — ) =

where the relaxation function vy must be determined exper-
imentally.

4.3 Heat Flux conditions

Finally, we must prescribe the temperature BCs. We de-
mand that the temperature be continuous across the interface

[T] =0, (32)
while the jump in heat fluxes must equal the heat produced
kYT - 7i] = 4, (33)

where the thermal conductivity « is different in the mem-
brane and the GDL. At the catalyst GDL the heat production
is given by

i= (G ) -t o). 69
We take the heat of reaction above as h.. = 326.J/( mole K),
see [2]. For comparison, with a temperature of 7' = 300K,
then Th,./(4F) = 0.25 Volts , while the over potential 7,
is often measured in tens of mille-Volts. The process of water
transfer between the GDL and the membrane is taken to in-
clude phase change. This is reflected by the last term on the
right-hand side of the heat production equation, where h;4 is
the heat of vaporization of liquid water.

5 Results

This talk addresses the mathematical features of the model
presented. In particular we will show that the interface kinet-
ics parameters, 7,7y, and the exchange current 4, . of the
Butler Volmer equations dominate the dynamics of the fuel
cell. An accurate estimation of these parameters is central to
fuel cell device modeling.

We also consider the limit Hi* — oo in the mass trans-
port equations (2-6) for the gas diffusion layer. In this scaling
of the equations the water concentration C becomes slaved
to the saturation concentration

Cy = Caat(t) + O(1/Hy), (35)

while equation (4) becomes an equation for I'. Moreover the
phase change term h;,I" scales out of the temperature equa-
tion (6) but plays a leading order role in (2). Most impor-
tantly, liquid water equation (5) rescales to a much slower
time evolution 7 ~ ¢/1000, so that the remainder of the
equations (2-4), (6), and the equations of the membrane, can
be taken to be driven adiabatically at their 3(7) dependent
quasi-steady states. This affords a significant reduction in
computational effort required to reach the liquid phase equi-
librium dynamics, which occur on the order of hours.
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