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ABSTRACT

The Genetic Algorithm is investigated as a parame-
ter extraction tool for a compact MOSFET model. In
addition it is shown that application of the Genetic Al-
gorithm can be used in compact model development in
order to reduce the ambiguity associated with selection
of the model parameter set. The new approach is illus-
trated by including Coulomb scattering in the effective
mobility model of a MOSFET and is verified by compar-
ison with experimental data at different temperatures.
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1 INTRODUCTION

Compact MOSFET models intended for use in cir-
cuit simulators are subject to several, often contradic-
tory, requirements. In order to achieve a high degree of
accuracy, a compact model should include most of the
relevant device physics without sacrificing the computa-
tional efficiency. It has been witnessed that the surface-
potential-based approach can increase the physical con-
tent of the compact model. However, the total number
of model parameters is still high, especially if a global fit
for different geometries is required. This necessitates an
elaborate extraction process which is not easily formal-
ized. Gradient-based optimization techniques, in partic-
ular the Levenberg-Marquardt(LM) method, were found
to be useful but somewhat limited in their scope. The
main difficulty is that the error profile has numerous
local minima which can trap the convergence process.
This phenomenon has been recently illustrated in [1]
and prevents automation of the parameter extraction
process. Similarly, the error surface of the type shown in
Fig. 1 is not conducive to successful application of clas-
sical gradient-based methods. In this work, the feasi-
bility of using the Genetic Algorithm (GA) for compact
MOSFET model parameter extraction is investigated.
To achieve unambiguous results we concentrate primar-
ily on the effective mobility model development and pa-
rameter extraction. Consequently, this investigation is
restricted to wide long-channel MOSFETs described by
combining a new form of a charge-sheet model [2] with
an elaborate effective mobility model presented below.

Error, a.u.

Y AY
e 3 3.2 34

0-\_ A}
2.4 2.6

Figure 1: Error surface for 7,,;=3.93nm, V;,=-0.93V,
po = 568cm?/Vs, pu1=1.14m/V and C;=0.7

2 MOSFET MODEL

The current-voltage characteristics of long-channel
devices can be accurately described using a combination
of the charge-sheet model with an elaborate description
of the low-field mobility. In fact, the analysis of long-
channel devices is the best way to extract the low-field
mobility. In this work, we use a recent version of the
charge-sheet model based on a symmetric linearization
of the bulk and inversion charges [2]. This assures that
when the GA is applied to a complete surface-potential-
based model [3], this work will automatically be incorpo-
rated as a proper long-channel limit of the general result.
In particular, the low-field effective mobility model dis-
cussed below is used without any change in the complete
model [3].

The drain current is given by

Id = /erff(W/L)Coz(Qim + am¢t)(¢sd - d)ss) (1)

where p.rs is the effective channel mobility, W and L
denote the channel length and width respectively, C,,
is the oxide capacities per unit channel area, g;,, is the
normalized inversion charge at the potential midpoint
[2,3], & is the thermal voltage, ¢sq and ¢ss are the
values of the surface potential at the source and drain
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ends of the channel respectively. In (1) the linearization
parameter

am =1+ (7/4)(bss + bsa — 2¢4)"1/2 )

where < is a body factor, is different from the standard
practice [4] in order to preserve node symmetry with
respect to source-drain interchange. The vertical field
dependence of the effective mobility used in this work is
given by

/1'0(1 + Xcoerb)/(l + 0'2Xcoerb)
1+ (.U'lEeff)g +Cs [Qbm/(%’m + Qbm)]2

Heff = (3)

Here gym and Efs are the bulk charge density and the
effective vertical field at the potential midpoint [2], Cs,
Lo, w1, 6 and X, are model parameters. Parame-
ter Cs is used to introduce Coulomb scattering essen-
tial for heavily doped devices and low temperature. In-
deed, Coulomb scattering which is essential under such
circumstance cannot be modelled in terms of the effec-
tive field concept. A physically motivated semiempirical
model of Coulomb scattering incorporated in (3) is that
of Ref. [5]. It describes the screening of the scattering
centers by the inversion charge and is well-behaved in
all regions of MOSFET operation.

3 THE GENETIC ALGORITHM

Gradient-based methods may converge outside the
physical range and produce far-from-optimal solutions
due to the presence of multiple minima of the error
function. They are also sensitive to the choice of ini-
tial parameter values and convergence is easily degraded
by numerical noise in evaluating derivatives. One alter-
native is to use genetic algorithms which are broadly
applicable, efficient search algorithms based on the me-
chanics of natural genetics. The GA has the capability
of speculating on new points in the search space with ex-
pected improved performance by exploiting historical in-
formation making it very robust in finding near-optimal
results in irregular error surfaces [6].

The flow-chart of the GA used in this work [7] is
illustrated in Fig. 2. The initial population of chromo-
somes is generated randomly. For a small number of
parameters (8), a population of 100 is sufficient. Each
chromosome represents a candidate for the parameter
set. The parameters are coded as strings of zeros and
ones. The parameter range is defined for each parame-
ter individually and is summarized in Table 1. A 10 bit
binary-coded gene represents the value of each of the
parameters. This value is then mapped linearly in the
parameter range to yield the actual value of the param-
eter. This mapping uses minimum and maximum values
of each parameter shown in Table 1. In the next step
each parameter set is sent to the model and the fitness
value is calculated according to the objective function.
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Figure 2: Flow-chart of GA

The measured data is comprised of a series of I3(Vy)
(drain current vs. drain voltage with different back bi-
ases) and I4(Vj) (drain current vs. gate voltage with dif-
ferent drain biases) characteristics. To meet the needs
of analog circuit designers, the model must accurately
predict current derivatives as well as the drain current.
Therefore, the transconductance Gn,(Vy) = 014/0Vy,
and drain conductance G4(Vy) = 014/0Vy are included
in the fitness evaluation. Consequently, the overall ob-
jective is to minimize the error function

9= "G +> > @+> > g+d. > g1 (4

Vgs Vb Vgs Vso Vsb Vs Vsb Vs

where g1, g2, g3 and g4 are defined as

a=>y [(Id,lab - Id,model)/ > Id,lab] i (5)

Vs Vs
g2 = Z [(Gd,lab - Gd,modez)/ Z Gd,lab] 2 ©)
Vs Vis
2
gs = Z [(log Ig10p — log Id,model)/ Z log Id,lab] (7)
Vs Vs

subscript "lab” indicates test data, and

g4 = Z [(Gm,lab - Gm,model)/ Z Gm,lab]2 (8)

Vs Vs

Depending on applications difference, the fit of a par-
ticular MOSFET characteristics can be emphasized by
assigning weighting factors to the components of g.
After the initial evaluation of the error function (4),
basic operations of the GA, i.e. reproduction, crossover
and mutation, are performed on the population. The
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roulette wheel selection combined with elitist model is
employed for reproduction and single position crossover
and mutation operations are performed. Table 1 shows
the parameter ranges and the optimal values that the
GA was able to achieve to maximize the objective func-
tion taken in the form ”const — g”. Comparison of the
measured and simulated data for two values of the ambi-
ent temperature is shown in Fig. 3. An excellent fit was
achieved without human interruption or intentional ini-
tial value setting. In agreement with MOSFET physics
the effect of Coulomb scattering is relatively small at
room temperature: the error is reduced by 38% when
Cs # 01is allowed. However the inclusion of the Coulomb
scattering term (C’s) allows one to obtain an excellent fit
in the —55 to 25°C range. More specifically, by applying
the GA for T = —55°C one obtains an error of 1.49¢ — 3
with Cs = 0.624 (optimal value at this temperature) and
of 6.80e — 3 when Cs = 0 but the other five parameters
are optimized (T,, and N, were fixed at their optimal
values for 7' = 298 K). This unambiguously shows both
the need for the Coulomb scattering term if the reduced
temperature operation is important. This example also
illustrates the value of the GA not only in parameter
extraction but also in compact model development.

The results of applying the Levenberg-Marquardt al-
gorithm are shown in Table 2 for two different initial set-
ting of the parameters. There are several problems: the
algorithm converges to the values of some parameters
(most importantly T,,) outside of the physical range.
Furthermore, the results are strongly dependent on the
initial parameter setting. Finally, an attempt to enforce
the same parameter ranges as in Table 1 results in non-
convergence depending on the initial parameter setting.
This indicates that the LM method is best used for fine-
tunning of parameters within a narrow range obtained
manually or by using the GA.

4 CONCLUSIONS

Genetic Algorithms are search algorithms that are
able to locate near-optimal solutions after having sam-
pled only small portions of the search space. There
are no convergence problems regardless of the param-
eter range but narrowing the range using physical con-
siderations reduces the extraction time. In addition to
insensitivity to the numerical noise, one of the most at-
tractive features of GA is the ease with which physics
based parameter ranges are enforced without encounter-
ing the convergence problems associated with gradient-
based methods. In the process of model development
GA allows one to quantitatively assess the need for in-
cluding new device physics. The combination of GA and
gradient-based methods to further reduce the extraction
time has been found useful.

Table 1: Example of GA application for T' = 298 K

Name Unit min | max optimal
Cs#0 | Cs=0
Tox nm 3.9 4.1 3.928 3.949
Newp | 1057em=3 | 2.0 5.0 2.554 2.875
Vb v -1.1 | -0.9 | -0.929 | -0.947
Ho cm?/Vs 300 | 800 566.9 428.1
1 m/V 0.0 3.0 1.143 0.863
0 none 0.0 3.0 1.658 2.585
Xecor V-1 0.01 | 0.10 | 0.0597 | 0.044
Cs none 0.0 3.0 | 0.5734 0.0
Error a.u. 27.76 | 1.90 | 9.35e-4 | 1.29e-3

Table 2: Example of LM application for T' = 298K

LM1 LM2
Initial | Final | Initial | Final
Tox 4.0 3.61 3.9 4.53
Ngup 3.0 3.017 2.0 1.877
Vip -1.0 -0.9415 -1.0 -0.9091
Lo 600.0 597.6 400 788.6
U1 1.0 1.2317 1.0 1.6756
6 2.0 1.4948 1.0 1.40
Xeor 0.04 | 0.0402 0.04 | 0.0403
Cs 1.0 0.8789 2.0 0.934
Error | 0.26 1.49e-3 | 2.895 | 1.58e-3
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Figure 3: Comparisons of the model (solid lines) with test data (circles) for a 10/10 um MOSFET
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