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Abstract

We use ab-initio simulations to calculate tunneling
currents through atomic scale structures. Two issues
affecting the outcome of the calculations have been
investigated: (1) the description of the wavefunction tails
set by the choice of basis set and (2) the interaction
between the structure and the electrodes. We selected two
systems for investigation: Si/SiO,/Si MOS device and
Au/benzene-1,4-dithiol/Au. Transport was calculated using
non-perturbative scattering theory [1] operating on a
Hamiltonian generated by the local orbital SIESTA code
[2]. On issue (1) we show that the exponential leakage
current decay with barrier thickness of ~ldecade/2 A
measured on Si/SiOy/Si [3] can only be reproduced in
SIESTA using at least a single-( plus polarization (SZP)
basis set. On issue (2) we show that the number of
electrode atomic layers affected by the molecular structure
is large and that underestimating that number may result in
a considerable overestimation of the tunneling current.

Keywords: nanotechnology, electron transport, scattering
theory, density functional theory, molecular electronics.

1 Introduction

Ab-initio calculations of transport through nanometer
scale structures, such as individual atoms or molecules
[4,5], and ultra-thin oxide barriers [6] (both referred here
as “devices”), directly link atomic structure and chemistry,
which are difficult to probe, to transport properties, which
are easier to access experimentally. However, in order to
deliver results that are qualitatively and quantitatively
meaningful, such calculations face three major challenges:
(1) the band gap problem [7] inherited from density
functional theory (DFT), which is the most used approach
for self-consistent band structure calculations of solid state
systems; (2) a proper description of the wavefunction tails
of the tunneling states; (3) the interaction between the
device and the electrodes. Issue (1) is hard to resolve and
has been the source of much investigation for many years.
It impacts band offsets in semiconductor/oxide systems
and the Fermi level-LUMO separation in metal/molecule
systems, which in turn affect the leakage current
exponentially.  Therefore, wuntil a computationally
affordable solution to this problem is found, tunneling

current calculations based on DFT do not have the
quantitative predictive power. On the other hand, DFT-
based transport calculations have been very useful in
providing insights and capturing the qualitative behavior of
transport phenomena [4-6]. In this work we address issues
(2), which in general has a qualitative effect on the
tunneling current, and (3), which has a more quantitative
character. We chose to simulate the model systems
S1/Si0,/Si MOS device and Au/benzene-1,4-dithiol/Au
since they are significant, the former for existing CMOS
technology, and the latter for being an important
benchmark system in molecular electronics (see for
example [5]).

2 Theory

In the limit of low temperature the total tunneling
current through a barrier is given by [1]:
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- 3
I ; L[ dET (E) (3)

where the transmission function T(E) in the absence of
inelastic scattering is given by

T(E)=4n*Y IT,(E)PS(E - E)S(E-E,)
Ir

where T,(E) is the transmission matrix element between
states in the left and in the right electrodes (see discussion
below) and a multiplicative factor of two has been included
to account for spin degeneracy. In first order perturbation
theory, the transmission matrix element 7j, reduces to the
matrix element of the scattering potential. Here 7}, are the
matrix elements of the Lippmann-Schwinger scattering

operator T , which is accurate to all orders [1].
It has been demonstrated [1] that Eq. (4) can be written
as

A
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where the indices /, r stand for left and right portions of the

modeled system (the leads). The operator f is the non-
Hermitian part of the Hamiltonian of the coupled system,
and describes the level broadening due to the coupling of
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the device with the electrode [1]. The retarded Green’s

function G is given by the usual expression,

R — (©)
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where E is the energy, H 2 is the Hamiltonian operator of

the isolated device (the finite system considered in the
DFT calculation), and 77 is a small real parameter. By
choosing a plus sign in front of 77 we limit our analysis to
waves outgoing from the scattering region (retarded

Green’s function). The operators Zi (i = I, r) are the so-

called self-energies and originate from the coupling
between the device and the two semi-infinite leads [4].

In the presence of an applied external bias V, the
transmission function 7(E) depends on V, namely T(E) is
written as 7(E,V). In this work we adopt the rigid band
approximation

T(EV)=T(E+nV) (7

so that the current can be written as
E +(1-mV

I = j T(E)dE ®)
Eg-nv

where 7] is the voltage division factor. 77 is taken as 0.5

following Datta et al. [4].

We previously applied this theory to a MOS capacitor
and found excellent agreement between the calculated
leakage current through a quasi-amorphous SiO, layer and
experiment [6]. We also considered the problem of resonant
tunneling and used a model system consisting of a single Al
atom bridging two Al metallic leads to show that indeed this
theory naturally captures tunneling resonance at the atomic
level [1]. Finally we have used the same approach to study
the impact of defects on the leakage current through
monoclinic HfO, [8].

In the present study two model systems were
investigated: Si/(B-quartz)SiO,/Si and Au/benzene-1,4-
dithiol/Au with the Si and Au lattices in the [001] and
[111] directions, respectively. All calculations were
performed using the local-density approximation [9,10]
(LDA) within density-functional theory (DFT) [11,12] as
implemented in the local orbital SIESTA code [2]. The
electronic ground state was determined self-consistently
using the preconditioned conjugate gradient method [13]
through the solution of the Kohn-Sham equations, and the
ionic positions were optimized to minimize the Hellmann-
Feynman forces [14]. Norm-conserving non-local
pseudopotentials of the Troullier-Martins type [15] were
used to describe all the elements considered. In order to
obtain qualitative convergence within a factor of two or so

from k-point converged results, 12 and 24 k-points in the
plane orthogonal to the electron current propagation were
used for the cases of Si/SiO,/Si and Au/benzene-1,4-
dithiol/Au, respectively. Such simplification is justifiable
due to the exponential character of the leakage current, the
uncertainty in experimental barrier thickness, and the well-
known limitation of DFT to correctly predict band gaps

[7].
3 Results

The short-range nature of the SIESTA basis set enables
a rather convenient partition of the Hamiltonian into two
leads and “device”. We include several atomic layers of the
lead’s materials as a buffer into the “device” sub-
Hamiltonian. Also, the atomic layers of the leads are divided
into slabs to ensure a “tight-binding” like block-tridiagonal
matrices describing both semi-infinite leads. Figure 1 shows
the tunneling current versus applied bias for different
numbers of atomic layers in the electrode’s slabs and the
device buffer for the Si/SiO/Si system, where the
stoichiometric and total SiO, barrier thickness are 12.9 A
and 20.9 A, respectively. Single-( (SZ) basis set and two Si
atoms per Si plane (1x1) were used. The figure label
contains two numbers per IxV curve: the left one
corresponds to the number of Si bulk-like atomic layers
along the [001] direction used to generate semi-infinite
electrodes [1], while the right one corresponds to the number
of Si atomic layers surrounding the SiO, barrier. Based on
the cutoff radius of the localized orbitals used and the lattice
constant of Si, we find that orbital overlaps only take place
within four layers of Si. This result is nicely confirmed by
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Figure 1: Current density through Si/SiOy/Si. The first
number in the label indicates the number of Si layers used to
create the semi-infinite leads, while the second indicates the
number of Si layers at each side of the SiO, barrier.

the fact that using four or six layers of Si to create the semi-
infinite leads does not change the calculated current (curves

Nanotech 2003, Vol.2, www.nsti.org, ISBN 0-9728422-1-7



labeled as 4+4 and 6+4 in Fig. 1). However, the same
argument does not apply to the number of Si layers
surrounding the barrier, since the tunneling current only
converges for 16 Si layers at each side of the barrier. The
explanation for this rather unexpected result is that, because
Si has such a small band gap and as a result states spread
over a considerable distance, indirect overlap of orbitals
(through off-diagonal terms in the Hamiltonian) plays a
crucial role.

The same argument applies to the case of dithiol
between two gold contacts, as shown in Fig. 2. These
calculations were performed using an SZ basis set and four
atoms per layer of gold (2x2). In this case, again we see a
good agreement between conductances calculated using four
or six layers of gold to build the semi-infinite leads, and a
decrease of the conductance as the number of gold layers
surrounding the dithiol molecule is increased. Notice that in
this case, 18 layers of gold in each side of the molecule were
not enough to reach convergence, even though convergence
seems to be close. Since gold has no band gap, its states are
delocalized and therefore indirect overlap of orbitals is even
stronger than in the Si case. The shapes of the conductance
curves shown in Fig. 2 are not in very good agreement with
previous calculations on a similar system [5]. We have
attributed that to the limited basis set (SZ) used to generate
Fig. 2. The issue is currently being investigated.
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Figure 2: Conductance of the Au/dithiol/Au system for
different combinations of numbers of Au layers in the leads
and surrounding the molecule, as described in Fig. 1.

The measured tunneling current across an amorphous
SiO, barrier of approximately the same thickness as the one
considered above and biased at 1.5 V is in the range of 0.01-
20 A/cm? for barriers of 1 and 2 nm thickness, respectively
[3]. Comparing the experimental value with the results
shown in Fig. 1, it is clear that the calculated tunneling
currents are in most cases severely overestimated. One
possible explanation for the disagreement is the DFT
underestimation of the Si/SiO, conduction band (CB) offset.
In fact, the offset obtained directly from the band alignment

(using the calculated and not experimental band gaps) is
only 1.2 eV for the SZ basis set, much less than the
measured value of 3.5 eV. Figure 3 compares the tunneling
current for different basis sets and indicates the CB offset
obtained with each of them. In general we observe the
expected trend that the higher the band offset, the smaller the
current. Indeed, for the most complete basis sets available in
the SIESTA code, single and double-{ plus polarization
(SZP/DZP) the current is in the range of 1-10 Alem?, in
reasonable agreement with the experimental data.
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Figure 3: Current density through Si/SiO,/Si obtained
with different basis sets. The conduction band offsets
calculated for each basis is indicated.

Some of the results in Fig. 3, however, are unexpected.
For example, even though the CB offsets obtained with DZ
and DZP are the same, the tunneling current is higher in the
DZ case than in the DZP case. Also, the CB offset obtained
with SZP is smaller than both DZ and DZP but its current is
the lowest. These facts indicate that CB offsets alone cannot
explain all the data. Tunneling currents are strongly
dependent on the tails of wavefunctions that penetrate the
barrier. So it is natural to expect that the quality of the basis
sets description of those tails has an impact on the calculated
current. Instead of directly investigating the tails described
by each basis set to determine which basis performs better (a
difficult task since we do not have a standard to compare
with), we calculated the slope of the tunneling current as a
function of barrier thickness and compared it with
experimental data. Figure 4 shows the tunneling current as a
function of barrier thickness for each basis set. The slope of
the corresponding experimental curve is 1 decade/2 A.
Notice that the slopes of all bases are approximately the
same for thin barriers, however they differ considerably as
the barriers becomes thicker. This is expected, since the
tunneling current is very sensitive to the magnitude of the
wavefunction tails under the barrier, which depend on the
basis choice. While the slopes for SZ and DZ are much
smaller than the measured value, indicating that the
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wavefunction tails are too big, those obtained with SZP and
DZP are in very good agreement with experiment, given the
approximate nature of the model structure used in the
calculations. Tomfohr and Sankey came to a similar
conclusion analyzing the complex band structure of -
cristobalite [16].
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Figure 4: Dependence of the tunneling current through
Si/Si0,/Si on the thickness of the SiO, barrier. The label
indicates the slopes of the curves calculated by fitting
straight lines. The measured slope is 1 decade/2 A. [3].

Conclusion

We investigated two aspects of ab-initio tunneling current
calculation: the impact of the number of lead-like atomic
layers surrounding the device and the choice of basis set on
the tunneling current. We found that the smaller the band
gap the larger is the number of layers necessary to obtain a
converged current. In the case of silicon, that number is 12
while in the case of gold it is larger than 18. We also found
that, even though an accurate CB offset is necessary for
quantitative estimation of tunneling current, a proper
description of wavefunction tails under the barrier via an
appropriate choice of basis set is also necessary. For the
Si/Si0,/Si system we conclude that SZP and DZP basis sets
are complete enough for predicting correct trends.
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