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ABSTRACT

We study nanosized colloidal particle interactions in
solution. Brownian dynamics that mimics the effects of
collisions with solvent molecules is developed and
integrated into discrete element method. Equation of
motion is derived so that the deterministic and stochastic
parts of particle motion are solved separately.
Computational strategy is developed to handle consistent
movement of Brownian cluster comprising agglomerated
particles. An intensive geometric check is developed to
prevent unrealistic overlapping, possibly caused by random
motion from Brownian dynamics. The nanosized SiC
particles in electro-plating solution are modeled. The
simulation results indicate that Brownian dynamics effects
primarily dominate the agglomeration processes of colloids.

Keywords: Brownian dynamics, DEM, DLVO, Colloid,
Agglomeration.

1 INTRODUCTION

Discrete element method (DEM) has been developed in
an integrated software system to study ceramic particle
suspension and colloidal forming process recently [1].
Particle interactions such as van der Waals attraction,
electrical double-layer repulsion, and short-range adhesive
contact as well as frictional drag, rotational resistance,
hydrodynamic lift, buoyancy and gravitational forces have
been incorporated. In this study, Brownian dynamics that
mimics the effects of collisions with solvent molecules is
developed and integrated into the DEM simulation to study
the agglomeration ratio and colloidal stability of nanosized
SiC particles in electro-plating solution.

2 EQUATION OF MOTION

The movement of a particle in solution is governed by
Newton’s equation of motion where the forces include
those from particle interaction, solution field and “kick”
from solvent molecules. For simplicity, the different
contributions to the forces are assumed to be independent to
each other [2]. From the Langevin equation, the balance
equation of motion for a spherical particle in suspensions
can be expressed as [3]:
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with m the mass, 7 the viscosity, a the radius, and X the

central position at time ¢ of the sphere. Zﬁ' pair COMPTiSEs

ailr
the force resulting from the sum of pair interactions
between this and other particles in the solution. At the long
range, the well-known Derjaguin-Landau-Verway-
Overbeek (DLVO) theory containing van der Waals
attraction and electrostatic repulsion is used. At the short
range, the Johnson-Kendall-Roberts (JKR) adhesive
interaction model is applied. At very short range, the Hertz
and Mindlin-Deresiewicz (HMD) mechanical contact

models are used. F fieta 18 the force from the solution field

acting on the particle which comprises rotational resistance,
hydrodynamic lift, buoyancy and gravitational forces. The
reader is referred to [1] for detailed expression and
discussion of these forces.

The last term on the right hand side of Equation (1) is
the fluctuating Brownian force characterizing the actuation
of particles due to the solvent molecules. To simplify the
calculation, we further assume that the motion caused
Brownian dynamics is independent from those by other
forces. Thus, it is possible to split Equation (1) into two
parts, for which the motion of particle can be expressed as:
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with X =X, +X,. The X, in Equation (2a) represents the
deterministic part of particle motion that can be solved
routinely through Euler’s or predictor-corrector methods [4].
The X, in Equation (2b) represents the stochastic part of
particle motion due to Brownian dynamics. Following the
derivations in [3], the probability f(Ax,At) of a
displacement Ax along an axis at time period Az can be
expressed as a Gaussian distribution, i.e.,
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where =0 and o’ =2D,At with D = . The k is

Boltzmann's constant and 7T is the temperature. We note
that two explicit assumptions are used while deriving
Equation (3). The first assumption is that the Brownian
forces are taken to be random in direction and magnitude
and uncorrelated on the time scale of particle motion. The
second assumption is that kinetic energy is partitioned
equally among the three translation modes of the particle at
equilibrium.

3 SIMULATION STRATEGY

Various ranges of the interaction forces between two
particles with decreasing surface separation distance /4 are
illustrated in Figure 1. Deterministic interactions modeled
by DLVO, JKR, HMD theories are plotted. Heuristic
methods for Brownian motion with respect to / are also
shown.
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Figure 1: Various interaction theories and heuristic methods
for Brownian dynamics between two particles with
decreasing surface separation distance A.

A time-stepping finite difference is used to solve
particle motion. The program will first initialize the
position and velocity of each particle in the simulation
domain. Based on the equation of motion, the total
interaction forces acting on each particle will be added.
Furthermore, the predicted position and velocity at next
time step will be updated. The Brownian motion generator
developed in this study will then impose a random
displacement for each particle before moving to the next
time step. The scenario of the DEM program with
Brownian motion simulation is shown in Figure 2.
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Figure 2: Scenario of DEM with Brownian motion.

3.1 Formation of clusters

Particles tend to agglomerate in solution. To impose the
Brownian motion properly to particles, clusters with a
group of particles need to be identified. As shown in
Figure 1, two or more particles when their surface
separation / is below a specific distance /4, are assumed to

form a cluster. All the particles in the same cluster are
assumed to move in the same direction and displacement
under Brownian dynamics.

The distance of balance 4, is introduced based on the
DLVO potential interaction force F,(h), where F,(h,) = 0.
If there is no repulsion force presented (i.e., without any
electrostatic repulsion), the length of /x/0° times the
particle radius is used for %, by default. With this criterion,
all the clusters at any given time ¢ in the domain can be
identified (Figure 3).

Because the Brownian motion generator is derived for
spherical particle, we need to further define the effective
radius and center for a cluster. Firstly, the center of mass in
the same cluster is treated as the effective center, thus the
base point of the random displacement can be identified
(Figure 4). Secondly, to simplify the calculation, the
effective radius is chosen to be equal to half of the diagonal
of the rectangle containing the cluster (Figure 5).
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Figure 3: The formation of clusters.
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Figure 4: Center of mass of a cluster is the base point for
Brownian motion.
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Figure 5: The effective radius of a cluster.

3.2 Geometrical contradiction check

It is not impossible to introduce geometrical
contradiction between particles, because the displacement
and direction of Brownian motion simulation of each
cluster are randomly selected. The overlapping, which
contradicts the physical phenomena, should be modified

accordingly. The strategy of considering the complexity of
geometrical contradiction check is illustrated in Figure 6.
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Figure 6: Different scenarios for contradiction check.

4 SIMULATION RESULTS

The agglomeration ratio of nanosized SiC particles in
electro-plating solution is modeled. An electro-plating
experiment was previously conducted to observe the
adsorption of SiC particles on Ni [5]. Divalent cations Ni**
in the plating suspension may adsorb on a negative surface
of SiC in a weak acidic solution, and reverse the particle
polarity to positive. Some particles will form clusters
during eletrophoresis process to the cathode due to the
causes of potential instabilily. In order to resolve the
effects of surface potential, the DEM simulation was
conducted. = The material properties and simulation
parameters are summarized in Table 1.

Simulations with and without Brownian dynamics are
conducted. To quantify the simulation results, degree of
agglomeration (DoA) ratio is instroduced:
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_ The total area of agglomerated particles

DoA x100%

The total area of all particles

The simulation results are shown in Figures 7, 8, and 9.
Significant effects with Brownian motion simulation are
observed. Without Brownian motion effects, DoA
decreases with the increasing zeta potential. However, for
the cases with Brownian motion, DoA fluctuates around
25% to 30%, while various zeta potentials contribute little
to the values of DoA.

To assert our findings, we further calculate the average
translation kinetic energy of a particle in one dimension.
From the properties given in Table 1, the kinetic energy is
1/2 kT=2.2x107'J, which is much greater than the kinetic
energy for charge effect (1/2 mv’=3.2x107"J, if the mean
particle size is 62 nm). Thus, roughly speaking, the kinetic
energy of a particle by Brownian motion is significantly
larger than that of the DLVO particle interaction, which
implies the Brownian dynamics dominates in this case.

Table 1: Computational Parameters

Properties of SiC particle
density 3.2x10° kg/m’
Hamaker const. 10.9x10% kg/m’
Young’s modulus [4.0x10" Gpa
Poisson ratio 0.16
zeta potential 0-50 mV

Properties of medium (water)
density 1.0x10° kg/m’
viscosity 1.0x10° Pa.s
temperature 300 K
Debye length (k) 1.0x10° m
dielectric const.  |80.1
valence 2

Operation conditions
particle conc. 5.3 vol %
particle size dist. {10 —100 nm
cal. time step 1.0x10"° s

—

| Zeta potential vs. Time (with Brownian motion)
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Figure 7: Zeta potential versus time with Brownian motion.

Zeta potential vs. Time (without Brownian motion)
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Figure 8: Zeta potential versus time without Brownian
motion.

Zeta potential vs. Degree of agglomeration

—+— Without Brownian
motion
<+ With Brownian motion

DoA

0 10 20 30 40 50 60

Zeta potential (mv)

Figure 9: Zeta potential versus degree of agglomeration.

5 CONCLUSION

The dynamics process of agglomeration is clearly
indicated by our simulation. From our preliminary results,
we conclude that the Brownian dynamics dominates
particle movement in dilute solution.

In this study, we have developed an integrated
simulation toolbox that combines DEM with Brownian
motion. Further simulations and experiments should be
conducted to gain more fundamental understanding of
particle agglomeration in dilute solution.
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