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ABSTRACT

This work describes numerical methods that are use-
ful in many areas: examples include statistical mod-
elling (bioinformatics, computational biology), theoret-
ical physics, and even pure mathematics. The methods
are primarily useful for the acceleration of slowly con-
vergent and the summation of divergent series that are
ubiquitous in relevant applications. The computing time
is reduced in many cases by orders of magnitude.
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1 CONVERGENCE ACCELERATION
(A BRIEF OVERVIEW)

What does it mean to “accelerate convergence”? The
answer is that one can do better than adding an infi-
nite series term by term if the goal is to get its sum to
some specified numerical accuracy. This may appear as
a paradox, but the truth is that several powerful tech-
niques have been developed to that end since the arrival
of the computer. The secret is to use hidden information
in trailing digits of partial sums of the input series, to
make assumptions on the form of the truncation error,
and to subsequently eliminate that error by a suitably
chosen algorithm. Success is judged by numerical ex-
periments, and performance is the target.

A rather famous example for a problematic slowly
convergent series is the Dirichlet series for the Riemann
zeta function of argument 2,
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whose terms all have the same (positive) sign. It can be
shown that a tenfold increase in the number of added
terms improves the accuracy of the total sum only by a
single decimal. When applying “usual” convergence ac-
celeration methods like the epsilon algorithm [1] to non-
alternating series, severe numerical instabilities are more
likely the rule than the exception, and in general, more
sophisticated algorithms have to be sought. We have
found that the combination of two transformations leads
to convincing numerical results in many applications.

The two steps are: (i) a Van Wijngaarden transforma-
tion which transforms the nonalternating input series
into an alternating series, and (ii) the acceleration of the
Van Wijngaarden transformed series by a delta transfor-
mation. Details of the two transformations can be found
in [2], and further developments will be published in [3].
Here, we are just going to state that the partial sums
of the input, denoted s,, are double-transformed to a

series of transforms 6&0)(1, S,) according to the

COMBINED NONLINEAR-CONDENSATION
TRANSFORMATION (CNCT),

that is s, — 67(10)(1,Sn), where the 5%0)(1,871) exhibit
much faster convergence than the input data s,,. The ex-
ample in Table 1 concerns the evaluation of Liz(0.99999)
to a relative accuracy of 107! already in twelfth trans-
formation order. This result can also be achieved by
term-by-term summation of the defining series of Liz —
in this case, however, about 100 million terms are re-
quired.

Table 1. Evaluation of 107! Li3(0.99999) with
the CNC transformation [2].

5 (1,So)

0.133 331 333 415 539
0.120 474 532 168 000
0.120 176 326 936 846
0.120 204 748 497 388
0.120 204 079 128 106
0.120 204 045 387 208
0.120 204 045 378 284
0.120 204 045 434 802
0.120 204 045 438 553
0.120 204 045 438 726
10 0.120 204 045 438 733
11 0.120 204 045 438 733
12 0.120 204 045 438 733
exact  0.120 204 045 438 733
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2 APPLICATIONS IN BIOPHYSICS

The theoretical description of biological processes is
unthinkable today without extensive statistical analysis,
and concurrently, fields like “bioinformatics” and “com-
putational biology” are emerging. Several important
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mathematical functions needed in the theory of statis-
tical distributions are represented by slowly convergent
series, and their computation can benefit to a large ex-
tent from using the CNCT proposed here. Examples in-
clude the discrete Zipf-related distributions whose prob-
ability mass functions are represented by the terms of
infinite series defining Riemann zeta, generalized zeta,
and polylogarithm functions and whose total probability
is calculated with these functions. These distributions
are used in statistical analysis of biological sequences
(of RNA, DNA and protein molecules) and occurence
analysis of folds of proteins [3]. The generalized repre-
sentation of these distributions was shown to be in the
form of the Lerch distributional family [3]-[5], which
requires calculation of Lerch’s & transcendent. The ®
transcendent is given by the following power series,

n

D(z,8,v) = Z m (2)

n=0

For |z| <1, |z| ~ 1, the power series is very slowly con-
vergent. Of particular importance is the case of a real
argument r = z. In the region = =~ 1, we found that
the application of the CNC transformation [2] leads to
a significant acceleration of the convergence, whereas for
z =~ —1, numerical problems can be solved by the direct
application of the delta transformation [see Eq. (8.4-4)
of [6]] to the defining series (2). The Riemann zeta,
generalized zeta, and polylogarithm functions are spe-
cial cases of Lerch’s transcendent. Further applications
of this special function include the quantile function of
continuous S distributions [7]. Finally, the evaluation of
several hypergeometric functions and related hypergeo-
metric distributions can be significantly enhanced using
the CNCT. Needless to say, a fast and accurate compu-
tation of these special functions is of crucial importance
in calculating various basic properties of these distribu-
tions, including moments, cumulative distribution func-
tions and quantiles, and parameter estimations.

3 APPLICATIONS IN
THEORETICAL PHYSICS

We will briefly mention that various long-standing
problems in theoretical physics have recently been solved
using computational methods based on convergence ac-
celeration techniques. Examples include quantum elec-
trodynamic bound state calculations [8], which yield
a theoretical description of the most accurate physical
measurements today (in some cases, laser spectroscopy
has reached a relative accuracy of 1071* [9]). There-
fore, the calculations are of importance for the test of
fundamental quantum theories and for the determina-
tion of fundamental physical constants. Further appli-
cations include the evaluation of quantum corrections
to Maxwell equations, which are given by the “quan-

tum electrodynamic effective action” [10]. This object
is representable by a slowly convergent series and is phe-
nomenologically important in the description of various
astrophysical processes.

We also report that it is possible, in combining ana-
lytic results obtained in [11] with numerical techniques
based on the CNCT, to evaluate the so-called Bethe
logarithm in hydrogen to essentially arbitrary precision.
Specifically, we obtain — for the 4P state — the result

In ko(4P) = —0.041 954 894 598 085 548 671 037(1) (3)

which is 9 orders of magnitude more accurate than the
latest and most precise calculation recorded so far in the
literature [12].

4 APPLICATIONS IN
MATHEMATICS

As far as mathematics is concerned, we will quote
from [13]: “In April 1993, Enrico Au-Yeung, an under-
graduate at the University of Waterloo, brought to the
attention of [David Bailey’s] colleague Jonathan Bor-
wein the curious fact that

> 1 1\? 1774
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based on a computation to 500,000 terms. Borwein’s
reaction was to compute the value of this constant to
a higher level of precision in order to dispel this con-
jecture. Surprisingly, his computation to 30 digits af-
firmed it. [David Bailey] then computed this constant
to 100 decimal digits, and the above equality was still
affirmed.”

Many formulas similar to (4) have subsequently been
established by rigorous proof [14]. Using the CNCT, it
is easy to calculate the sum (4) to 200 digits, based
on multiprecision arithmetic [13] and a Linux personal
computer, within a few hours. In calculating the specific
case (4) to an accuracy of 200 decimals, which a priori
requires the calculation of about 102%° terms of the se-
ries, we report that roughly 84 000 terms are sufficient
when employing the CNCT. This corresponds to an ac-
celeration of the convergence by roughly 200 orders of
magnitude.

5 CONCLUSION

The CNCT has become useful in a wide variety of ap-
plication areas which extend beyond the original scope
of the transformation [8]. Details of the implementa-
tion of the algorithm, in the three languages C, Fortran
and Mathematica [15] will be presented at the confer-
ence. Sample files will also be made available for inter-
net download at [16]. We have recently investigated fur-
ther potential applications of the algorithms described

Nanotech 2003, Vol. 2, www.nsti.org, ISBN 0-9728422-1-7 536



here, such as the evaluation of generalized hypergeomet-
ric functions which can be of exquisite practical impor-
tance, with rather promising results. The rather general
applicability of the convergence accelaration methods
makes them very attractive tools in scientific comput-
ing.
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