A Systematic Approach to Macromodeling Complex MEMS Devices

Giorgio Casinovi
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0250

Abstract

This paper describes a systematic approach to lumped-constant modeling of arbitrary MEMS devices based on the concept of element stamps. In particular, it is shown that stamps can be used to represent the dynamical behavior of micro-electromechanical elements whose motion is restricted by arbitrary ideal constraints. Since many MEMS structures are built from a common set of basic elements, such as beams, anchors and plates, this approach allows the systematic development of models for a large variety of MEMS components, and their seamless integration into simulators capable of handling indifferently mechanical, electrical or electromechanical devices. As a practical application example, the stamp describing the dynamical model of a planetary electrostatic motor is derived, and numerical results obtained from the simulation of this model are presented.

Keywords: Compact modeling; simulation; MEMS.

1 INTRODUCTION

The combination of MEMS devices with conventional integrated circuit technology can potentially lead to the development of highly efficient, low-cost mixed-technology systems with a wide range of applications. Such systems may contain integrated control circuitry, sensors, digital logic, etc., for a total of hundreds to thousands of tightly-coupled electrical and mechanical devices.

Most of the research work on MEMS simulation has focused on distributed-constant methods of analysis [1]. Recently, however, efforts have been made to develop lumped-constant models for MEMS, which, although less accurate than distributed-constant models, greatly reduce the computational effort required for simulation. Published results indicate that the accuracy of lumped-constant models of MEMS devices is sufficient for many applications [2], [3].

Element stamps were first used to represent lumped-constant device models in conventional circuit simulators [4]. An extension of this modeling approach to the simulation of MEMS has recently been proposed in [5], [6]. Representing MEMS devices by means of stamps has several advantages: it makes it possible to include built-in MEMS device models in simulators, and to handle them no differently than other circuit elements, such as capacitors or transistors. This allows the seamless integration of such models in a simulator capable of handling indifferently mechanical, electrical or electromechanical devices. Furthermore, the use of element stamps greatly reduces the computational effort required for simulation, compared to general-purpose simulators like SABER [2] or MATLAB [3], which rely on user-provided HDL models. This becomes a significant advantage in the simulation of mixed-technology systems containing hundreds or even thousands of electronic and MEMS devices.

This paper describes a systematic approach to the construction of stamp-based models of complex MEMS devices. This approach exploits the fact that many MEMS structures are built from a common set of basic (or atomic) elements, such as beams, anchors and plates, whose motion may be variously restricted by ideal mechanical constraints [7], [8]. It will be shown that the equations describing the dynamics of rigid bodies, as well as any ideal mechanical constraints which they are subject to, can be represented by means of stamps. As mentioned above, stamps can also be used to describe the electrical behavior of a device. Consequently, the electromechanical behavior of a complex device can be modeled by combining systematically the stamps describing the electrical and mechanical behavior of its constitutive elements. As a practical demonstration, this approach will be used to model and simulate the behavior of a planetary electrostatic motor.

2 MEM ELEMENT STAMPS

Throughout this paper it will be assumed that MEM elements can be modeled as rigid bodies, and that their motion is restricted to two-dimensional translations and rotations around an axis perpendicular to the plane of translations. The methodology described herein, however, is of general applicability and remains valid even if these restrictions are removed.

Under these assumptions, the equations of classical mechanics governing the dynamics of rigid bodies can be expressed as follows:

$$\sum f_k = 0; \sum r_k = 0,$$

(1)

where $\sum f_k$ is the sum of all the forces acting on the body, and $\sum r_k$ is the sum of the force torques with respect to the axis of rotation.
body is constrained in such a way that a point P, identified by coordinates (x_P, y_P) in the body’s frame of reference, must belong to the stationary line identified by the equation:

$$n_x x + n_y y = c.$$

As the body moves, the coordinates of P in the stationary frame of reference are given by:

$$x = x_c + x_p \cos \theta - y_p \sin \theta$$
$$y = y_c + x_p \sin \theta + y_p \cos \theta.$$

Therefore, the constraint that P must belong to the specified line translates into the following equation:

$$g(x_c, y_c, \theta) = n_x(x_c + x_p \cos \theta - y_p \sin \theta) + n_y(y_c + x_p \sin \theta + y_p \cos \theta) - c = 0. \quad (2)$$

In addition to this equation, the constraint also introduces an additional unknown into the system, namely the force exerted on the body by the constraint itself. This force is perpendicular to the line, and so can be expressed as $F \mathbf{n}$, where $\mathbf{n} = (n_x, n_y)$ is the vector normal to the line. Its torque with respect to the point (x_c, y_c) is given by:

$$T_F = -F[n_x(x_p \sin \theta + y_p \cos \theta) - n_y(x_p \cos \theta - y_p \sin \theta)].$$

Using the procedure outlined in the previous section, the additional equation and unknown introduced by the constraint can be inserted into the element’s stamp, as shown in Fig. 1, where:

$$\frac{\partial T_F}{\partial \theta} = -F[n_x(x_p \cos \theta - y_p \sin \theta) + n_y(x_p \sin \theta + y_p \cos \theta)]$$

$$\frac{\partial T_F}{\partial F} = -n_x(x_p \sin \theta + y_p \cos \theta) + n_y(x_p \cos \theta - y_p \sin \theta) = \frac{dg}{d\theta}.$$

The last line in the stamp corresponds to the constraint given by (2).

![Figure 2: Circular constraint.](image-url)
As another example, suppose that the body's motion is constrained so that the circle of radius \(r \) centered at \((x_C, y_C)\) rolls without slipping inside a bigger, stationary circle of radius \(R \) centered at the origin, as shown in Fig. 2. This requirement translates into two mathematical constraints. The first is that the two circles must be tangent to each other, which means that the distance of the center of the smaller circle from the origin must be equal to \(R - r \), i.e.:

\[
x_C^2 + y_C^2 = (R-r)^2. \quad (3)
\]

The second condition is that the velocity of the moving frame at the point of contact between the two circles must be zero, which translates into the following equation:

\[-\dot{x}_C \sin \phi + \dot{y}_C \cos \phi + r \dot{\theta} = 0.
\]

But: \(\sin \phi = \frac{y_C}{(R-r)} \), \(\cos \phi = \frac{x_C}{(R-r)} \), so that the equation above becomes:

\[-\dot{x}_C \frac{y_C}{R-r} + \dot{y}_C \frac{x_C}{R-r} + r \dot{\theta} = 0. \quad (4)
\]

Two forces arising from these constraints, \(F_x \) and \(F_y \), respectively tangential and normal to the circles at their point of contact, act on the moving body. The components of the sum of these two forces along the \(x \) and \(y \) axes are:

\[
F_x = F_n \cos \phi - F_t \sin \phi \\
F_y = F_n \sin \phi + F_t \cos \phi,
\]

while the torque with the respect to the point \((x_C, y_C)\) is simply \(r F_t \). The corresponding stamp is shown in Fig. 3.

4 PLANETARY ELECTROSTATIC MOTOR

To demonstrate its practical applications, the methodology described in the previous sections is now used to obtain the stamp describing the dynamical behavior of an electrostatic motor.

A planetary or harmonic electrostatic motor [9] consists of a single cylindrical rotor placed inside a stator that is divided into a number of electrodes. The rotor is electrically insulated from the stator by one or more layers of dielectric material. The application of appropriate voltages between the rotor and the stator electrodes creates a torque on the rotor that forces it to roll inside the stator.

Using an approximate two-dimensional analysis [9], it can be shown that the capacitance between the \(i \)-th stator electrode and the rotor is given by:

\[
C_i(\phi) = \varepsilon L \frac{1 - \alpha}{1 - \alpha - \beta} \frac{\Phi(\phi + \Delta/2) - \Phi(\phi - \Delta/2)}{\log R_0},
\]

where \(\varepsilon \) is the permittivity of the dielectric material between the stator and the rotor, \(L \) is the length of the motor, and:

\[
\alpha = \frac{d}{R} \quad \beta = \frac{r}{R} \quad \Phi(\phi) = \arctan \left[\frac{(a^2 - 1) \sin \phi}{2a - (a^2 + 1) \cos \phi} \right],
\]

and \(a \) and \(R_0 \) are the quantities defined respectively in (2) and (3) in [9]. The total energy stored in the electrostatic field between the stator and the rotor is given by:

\[
E = \sum_{i=1}^{N_p} \frac{1}{2} C_i(\phi) v_i^2,
\]

where \(v_i \) is the voltage between the rotor and the \(i \)-th stator electrode, and \(N_p \) is the number of electrodes in the stator.

The forces acting on the rotor can then be computed from the following equations:

\[
F_x = \frac{\partial E}{\partial x} = \sum_{i=1}^{N_p} \frac{1}{2} \frac{\partial C_i}{\partial x} v_i^2 \\
F_y = \frac{\partial E}{\partial y} = \sum_{i=1}^{N_p} \frac{1}{2} \frac{\partial C_i}{\partial y} v_i^2
\]

(obviously \(\frac{\partial E}{\partial \theta} = 0 \), so the electrostatic forces do not create any net torque with respect to the rotor's center of mass).

As described in the previous section, two additional equations arise from the constraint that the rotor should rotate inside the stator without slipping. Using the methodology described earlier, these equations can be used to obtain a stamp.
that completely characterizes the motor’s dynamical behavior. The stamp’s dimensions are \((N_p + 9) \times (N_p + 9)\); \(N_p + 1\) rows and columns correspond to the stator and rotor voltages, six to \(x_C, y_C\) and \(\theta\) and their derivatives, and two to the constraints imposed on the rotor’s motion. The stamp itself is not shown because of space constraints.

5 NUMERICAL RESULTS

To verify the effectiveness of this approach to MEMS simulation, the electrostatic motor stamp derived in the previous section was incorporated into a simulator. A simple system containing a 12-pole motor, with parameters taken from [9], was simulated under various excitation voltages applied to the stator electrodes. Figure 4 shows the normal force exerted on the stator by the rotor when the stator electrodes are driven by periodic 30 V rectangular-wave voltages with a duty cycle equal to 1/8 of their period. By comparison, Fig. 5 shows the normal force acting on the stator when the applied voltages are 60 V sawtooth waveforms with a duty cycle equal to 1/15 of their period. These results give an example of the practical application of the methodology described in this paper to the generation of models suitable for the simulation of complex MEMS devices.

6 CONCLUSION

This paper has described a systematic methodology for the derivation of models of complex MEMS devices based on the concept of element stamp. Stamps provide a compact and efficient way to add the contribution of a particular element to the set of equations describing the overall behavior of a system. It has been shown that arbitrary mechanical constraints can be represented by stamps. Thus dynamical models of complex MEMS devices can be built in a systematic way by combining the stamps corresponding to the device’s constitutive elements. A potential limitation of this approach is that a simulator that relies on stamps can handle only devices described by its built-in models. This is unlikely to be a major drawback, however, because most MEMS devices are built from a limited set of elementary elements [8].

REFERENCES