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ABSTRACT

The interaction of a bristle structure with a fluid
is studied. Such a problem arises, for example, when
modeling biotechnological devices operating in liquids
or when simulating epithelium surfaces of blood vessels.
In the paper, a homogenized model of the bristle struc-
ture is proposed. The interaction between the bristles
and the fluid is replaced by an averaged material whose
properties are derived using the passage to the limit in
the model based on the fluid-solid interface conditions
as the number of the bristles goes to infinity whereas
their thickness goes to zero. Based on the model of the
averaged material, the computation of sensitivity char-
acteristics for a Love wave sensor is done.

Keywords: Multi-layered structure, Fluid-solid inter-
face, Homogenization, Biosensor.

1 INTRODUCTION

This investigation is motivated by modeling a sur-
face acoustic wave sensor based on the generation and
detection of horizontally polarized shear waves (see [1]).
Acoustic shear waves are excited due to an alternate
voltage applied to electrodes deposited on a quartz crys-
tal substrate. The waves are transmitted into a thin
isotropic guiding layer covered by a thin gold film that
contacts a liquid containing a ligand to be detected. The
ligand adheres to a specific receptor (aptamer) immobi-
lized on the surface of the gold film. The arising mass
loading causes a phase shift in the electric signal to be
measured by an electronic circuit.

One can impress the aptamer layer as a periodic bris-
tle structure on the top of the gold film contacting with
the liquid (see Figure 1). The thickness of the aptamer
layer is about 4 nm and the number of bristles per sur-
face unit is enormous large. Therefore, the direct nu-
merical modeling of such a structure using fluid-solid
interface conditions is impossible. Proper models can
be derived using the homogenization technique from [2]
and [3] along with the strict treatment of the fluid-solid
interface (see e.g. [4]).

A homogenization technique for the treatment of the
bristle structure is proposed. The bristle-fluid structure
is replaced by an averaged material whose properties are
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Figure 1: Coupled system: =, UT'UQ,

derived as the number of bristles goes to infinity whereas
their thickness goes to zero. The fluid-solid interface
conditions are accounted when passing to such a limit.
The height of the bristles remains constant.

The difference to known homogenized models like
e.g. [5] proposed for the simulation of rigid rough surface-
fluid interfaces consists in the assumption that the solid
part is elastic. The fluid is assumed to be weakly com-
pressible and the velocities in the fluid being sufficiently
small. This enables the usage of the linearized Navie-
Stokes equations. The motion of the solid is described
by linear elasticity equations. On the fluid-solid inter-
face, the continuity of normal pressures and velocities
(no-slip condition) is assumed. The no-slip condition is
the most hard to treat. We apply the approach pro-
posed by J.-L. Lions in [6] which consists in the usage
of the velocity instead of the displacement as the state
variable for the solid. Using two-scale convergence, we
obtain a limiting equation that describes a new mate-
rial possessing some interesting properties: 1) the elastic
modules decrease comparing to the ones of the bristle
material but some resistance force which is proportional
to the strain velocity appears; 2) the shear elastic mod-
ules vanish; 3) some short memory with respect to the
strain arises. Thus, we obtain a thin layer made of a
new material which contact the liquid from above and
the solid body from below.

Using the model of the new material, we compute a
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dispersal relation which expresses the dependence of the
surface shear wave velocity on the excitation frequency.
Based on the dispersal relation, one can compute many
useful characteristics, for example, the sensitivity of the
biosensor with respect to adhering ligand-biomolecules.
Numerical algorithms developed by the authors work
for any number of anisotropic layers. The precision of
the method enables to estimate the sensitivity regarding
nanoscopic mass loadings.

2 MATHEMATICAL MODEL

A coupled system modeling a periodic bristle or pin
structure contacting with a fluid is shown in Figure 1.
The solid part consists of a substrate and pins located
on its top. The pin structure is assumed to be periodic
in (z1,z2) and independent of z3. The total domain of
the coupled system is denoted by  C R3. The domains
occupied by the fluid and elastic continua are denoted
by Q, and ), respectively; the boundary separating
the continua is called T'.

2.1 Equations for Fluid-solid Interface

The coupled system is described by the following
equations

prut = —Vp+divPug +p,. f in Q. (1)
vp: = —divu in Q. (2)
psVi = divGug + pg f in Q. (3)

The no-slip and pressure equilibrium conditions on
the fluid-solid interface read

on I, (4
on I, (5)

Vi=UuU

Gvy-n=(—-pl+Pug) n

whereas the boundary and initial conditions are trivial
for simplicity. Here, p, and ps are the densities of the
fluid and the solid parts, respectively; u is the velocity
field of the fluid, p is the pressure in the fluid, v is
the displacement field of the solid part, f is an external
force like the gravity. The coefficient v characterizes the
compressibility of the fluid. The fourth-rank tensors P
and G are of the following form

Pug = Adivul + p D(u), Gugy =Ilidivol+ s D(v).

The second-rank unit tensor I has the components I;; =
di;, where d;; is the Kronecker symbol. The strain veloc-
ity tensor D(u) has, as usually, the components D;;(u) =
1/2(0u;/0z; + Ouj/Ox;) . The symbols A and p denote
positive balk and dynamic viscosity coefficients of the
fluid, respectively; {; and I, are Lamé coefficients of the
solid part if the solid phase is isotropic. As usually, the
summation over repeating indices is assumed, n denotes
the normal vector to a surfaces or curve. Note that the

components of the elastic stiffness tensor G can be arbi-
trary up to base restrictions so that arbitrary anisotropic
solids can be considered.

The no-slip condition (4) is the main handicap for
the mathematical treatment of the model (1)-(5). The
method from [6] is used to overcome this difficulty by
utilizing the velocity instead of the displacement in equa-
tion (3). This is being done by introducing the following
integral operator

t
Jow = / w(s)ds.
0
Now, equation (3) can be rewritten in the form

psur = divGTiug + ps f, (6)

where u = v;. The pressure p can be expressed through
the velocity u from equation (3) as follows

p = —y " ldivZu. )
2.2 Refinement of the Pin Structure

A refinement parameter € will be introduced so that
the value € = 1 corresponds to the original structure but
the number of pins grows, and the pins become finer
whenever ¢ — 0. Let x be the characteristic function
of the domain Q.. This function will be redefined so
that it becomes dependent on the refinement parameter.
Assume that the (x1,z2)-projection of the base cell of
the pin structure is a square and scale this square to the
unit square ¥ = [0, 1] x [0, 1]. The (z1, z2)-projection of
the solid part of the base cell will be transformed into a
subset ©; C . Denote the domain £ \ &, by .. The
domain ¥ is called structural cell (see Figure 2).

©

z

F

Figure 2: Structural cell & = [0,1] x [0, 1]

Let & = (z1,22) and %(&) be the I-periodic extension
of the characteristic function of the domain ¥, to all R2.
We define the modified function x° as follows (remember
that § is the thickness of the pin layer):

1, x3 > 5,
XE(z) = >‘<(§>, —6< 25 <4, 8)
0, T3 < —0.

Let us rewrite equations (1), (2), and (3) as one equa-
tion with discontinues coefficients in the whole domain
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Q using the introduced characteristic function x*. The
equation reads

p° ug = divM ug + p° f, 9)
where

p°=peX" + ps (1= X5),
M® =x°P+ (XE'y_II@I—I- (1- XE)G) Ji.
The interface condition (4) is equivalent to the continu-

ity of u® on I" but the condition (5) assumes now the
form

GTui, -n = (’y_ldiv,]tus I+ Pu;) -m onI*, (10)
when accounting (7).

Theorem 2.1 If f, f, € L*([0,T] x Q), then a unique
weak solution to problem (9), (10) satisfies the estimate

esssuPye(o.) (s ()220 + llug (8 2()) < C, (11)
where C' is an independent of € constant.

Theorem 2.1 ensures the existence of subsequences {u®*}
that converge to limiting functions u. Using a two-scale
convergence technique by G. Nguetseng and G. Allaire
(see [7], [8], and [9]), one can show that all limiting
functions satisfy the same limiting equation. From the
uniqueness of solutions of the limiting equation, one con-
cludes that the sequence u® itself converges to an unique
limiting function wu.

2.3 Limiting Equations

The two scale technique enables to derive the limit-
ing equations. Nevertheless, the determination of their
structure and computation of their coefficients is a chal-
lenge. Let Q be divided into three parts

Qf = {x e Q|zz > 6},
Q° = {(ZI EQliL‘g < —5},
QF={x e Q|d < z3< -6}
The limiting equations corresponding to the problem
(9),(10) are of the form
Qf: poug — div Pugy — 47 IVdiv iu = o f,  (12)
Q% psuy — div :Gug = ps f, (13)
Q" peus — div Pug — div:Gug

—div /Otw(t —S)ugx(s)ds=pof. (14)

The physical conditions on the interfaces between Q"
and Q and between Q" and Q° are being derived from
a weak formulation which precedes and yields equations

(12)—(14). Note, that equations (12) and (13) coincide
with (1) and (6), respectively. Thus, the governing equa-
tions for the pure fractions remain unchanged by the ho-
mogenization, which has been of course expected. What
we have new, is integral-differential equation (14) which
can not be reduced to a pure differential equation by dif-
ferentiating or by a substitution like w = J;u. The com-
putation of the tensors P, G, and w(7) is based on an
analytical representation of solutions of the so-called cell
equation which arises in homogenization theory. The
difficulty is that the cell equation is not resolved with
respect to the time derivative of the unknown function
in our case. This handicap is overcome by restricting
the cell equation to a certain subspace providing invert-
ibility of the involved operators.

The computation of the tensors P, G, and w(7) is be-
ing done with finite elements. The next theorem states
their properties which provide the well-posedeness of
equation (14).

Theorem 2.2 There exists a positive constant C such
that

PinZiZ0 2 Cl21%, GiynZiy2u >0
for every second-rank tensor Z, where |IZ|? = ZiZi5.
The tensor G is degenerated, and GijuZi;Zm = 0 if
and only if Z11 + 292 =0 and Z33 = 0.

As one can see from equation (14), the tensor G is
the elastic stiffness tensor for the homogenized contin-
uum. Theorem 2.2 says that the homogenized material
has rather new properties. Namely, it does not resist
to the deformation, if the first invariant and the compo-
nent (3,3) of the corresponding strain tensor are equal to
zero. In other words, such deformations do not produce
any stresses. Such a class of deformations is sufficiently
large: it contains all deformations which do not change
the volume. Note that the tensor w(7) falls very rapidly,
if 7 grows. The time scale is about 107!!s for typical
material parameters.

3 SIMULATION RESULTS

Using the derived model, we simulate a Love wave
sensor based on the multi-layered structure shown in
Figure 3. The molecular layer adhering to the surface
of the auxiliary gold layer is being modeled through
the homogenization technique developed in this paper.
The molecular layer is expected being well described as
a new material associated with equation (14). Equa-
tions (12) and (13) describe then the overlaying fluid
and the underlying gold layer. Such a model allows us
to compute the dispersal relation which expresses the
dependence of the velocity of surface shear waves on
the excitation frequency. The sensitivity is being com-
puted as (g — wr)/Am where @g and wg are the res-
onance frequencies for the loaded and unloaded sensor,
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respectively. The resonance frequency is defined from
the equation A(wg) = 40um. Here ) is the wave length
and 40um is the period of the input IDTs.

Figure 4 presents computed graphs of the sensitiv-
ity versus the guiding layer thickness for the Love wave
sensor. The loading is modeled through doubling the
thickness of the homogenized layer. The thickness of
the gold layer is being varied from 0.5 nm to 300 nm.
The best sensitivity is achieved at 200 nm. Above this
value, decreasing the sensitivity is observed. The light
curve in Figure 4 corresponds to 300 nm thickness of
the gold layer. The computation results are in a good
agreement with physical experiments described in [10].

Gold layer
[ Si0, guiding layer
Quartz crystal substrate

Figure 3: Multi-layered structure
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Figure 4: Comparison of numerically computed and ex-
perimentally measured sensitivities

The next simulation shows the sensitivity of the Love
wave sensor regarding an additional homogenized pro-
tein layer which is being adhered to the aptamer layer
(compare with Figure 3). The dependence on the ap-
tamer packing density is presented. Thereby, the protein
packing density is changing so that their ratio remains
constant. The packing density is defined as |Zg|/(|Zs|+
|Zr]), see Figure 2. The thicknesses of the aptamer and
protein layers are 21A and 43A, respectively.
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Figure 5: Sensitivity for various packing densities
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