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ABSTRACT

We present a thorough theoretical and computational
study of quasi-static motion of bubbles in microfluidic
channel contractions. We investigate how geometry and
surface physics formulated in terms of surface free en-
ergies and contact angles affects the behavior of incom-
pressible bubbles passing through a contraction. The
analysis carried out is easily generalized to a variety of
channel geometries and channel cross sections.

Keywords: Microchannel contraction, bubble, quasi-
static motion, modelling, balancing force.

1 INTRODUCTION

In microchannels gas bubbles present a significant
problem: they can block and/or disrupt the flow, and
disturb measurements in an uncontrolled manner. For
that reason, the sample liquids are usually treated by
various methods before they enter a microfluidic chip.
However, in spite of such efforts gas bubbles may still
be present, and once there it often requires large applied
pressures to push them out of the system [1].

In this paper we focus on microchannel contractions
as they are often areas where bubble clogging problems
arise in microfluidic systems. An analysis of the mo-
tion of a bubble through a channel contraction is gen-
erally very complicated. If the model is to be complete
it requires detailed modelling of the physical processes
near the contact lines, e.g., wetting [2], dynamic contact
angle [3], and static and dynamic friction [4]. Further-
more, the modelling requires a precise description of the
liquid-gas free surface and of course of the dynamics in
the bulk fluids.

In this work we will however focus on a simplified
model. As a first approach we will investigate the quasi-
static motion of an incompressible bubble through a mi-
crochannel contraction of spherical cross section. This
implies that all dynamic components are neglected, the
model basically predicts the behavior of the potential en-
ergy of the system. The system remains arbitrarily close
to equilibrium at all bubble positions, i.e., the balancing
force required to hold the bubble at rest is determined
for all positions. It is thus possible to predict the max-
imal balancing force for a given contraction geometry.

In the following we present the physics used in the
numerical models as well as some analytical results used
to test the model. The model is then presented together
with a discussion of selected results.

2 PHYSICS

The total energy Eio of a bubble passing through a
microchannel contraction is the sum of the surface free
energy, gravitational energy and kinetic energy. The
bubble is assumed to be incompressible, an assumption
leading to negligible relative errors smaller than one per-
cent. Furthermore, we study only quasi-static motion of
the bubble resulting in zero kinetic energy. Finally, we
treat channels of widths less than 300 pum which is sig-
nificantly smaller than the capillary length A,
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where oy is the liquid-gas surface tension, p is the den-
sity of the liquid and g the gravitational acceleration.
As a result gravitational energies can be neglected.

In conclusion, the total energy of the system is given
only by the surface free energy, i.e., the sum of interfacial
energies times interfacial areas

FEioy = Z 0:A; = 015 A1g + Osg Asg + 051441 (2)
i

Here 01, 0se, and oy is the surface free energy of the
liquid-gas, solid-gas, and solid-liquid interface, respec-
tively. Likewise for the areas A;. The total external
force F' needed to balance the bubble is given by the
gradient of the total energy with respect to the center
of mass coordinate of the bubble z.,, hence
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The center of mass may be found as
138
Tom = 37— ; z;V; (4)

where x; are the center of mass coordinates of the dif-
ferent volume sections V; depicted in Fig. 2. The total
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Figure 1: Longitudinal cross section of a 3D channel of
circular transverse cross sections. The channel is con-
tracting from diameter D to d. The specific channel
profile is defined by the function r(z) and the tapering
angle 0;. The contact angle is denoted 6. The coordi-
nate of the left and right contact lines are zp, and zg,
respectively. The center of mass coordinate of the gas
bubble is denoted Zcm.
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Figure 2: Division of the bubble into the volume parts
V; for j =1,2,3,4,5. The wide contraction, and narrow
parts of the channel are further identified.

volume Vioy = zj V; is constant as the bubble is as-
sumed incompressible.

The bubble is passing from a wide channel of diam-
eter D to a narrow channel of diameter d. The specific
shape of the contraction is in the following defined by a
function r(z). A so-called tapering angle 6, is defined at
the steepest part of the contraction. All details are pre-
sented in Figs. 1 and 2. The channel is of circular cross
section hence at equilibrium the liquid-gas interface is
part of a sphere.

The bubble is also assumed to wet the solid surface
as shown in Fig. 1. There is a contact angle 6 at the
contact line. The relation between the interfacial free
energies and the static contact angle is given by the

Young equation,
O1g C0s 0 = 0gg — Ol (5)

The relation between curvature and pressure is given
by the Young-Laplace equation [5].

2.1 Analytical Work

To be able to test the model discussed in the next
section some analytical work is here shortly presented.
The total balancing force on a large bubble with the left
contact line in the wide channel and the right contact
line in the narrow channel (V; # 0 for all j, see Fig. 2)
is given by,

dEot _ dEiot dzxy,
dZTem dzry, dZTem
1 1 d.’L'L
= D2 - =) =,
0O1g COs O ( p D) 7 (6)

To obtain the expression for ‘%‘f& volume conservation
has been used. Note that the expression is constant for

a given geometry. An expression for Ez‘iﬂ' is also found
cm
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where zo and z4 are the center of mass coordinates of
the volumes V3 and V4, respectively. In Eq. (7) the de-
pendence upon zj, is through V5, V4, zo, and z4 as V3
and Vs are constant for the analyzed bubble configura-
tion.

dzxy, 1 1
dTem Viot { 1o

3 THE MODEL

In order to find the maximal force acting on a bubble
for a given geometry a semi-analytical model of the con-
tracting channel is implemented in MatLab. A numer-
ical Romberg integration scheme is used to determine
the location of the right contact line zg for a given po-
sition of the left contact line z1, on Fig. 1. The center of
mass coordinate Z.m is then determined together with
the respective interface areas A;. For a specific geome-
try defined through r(z) and the tapering angle 8; the
maximal force is found through Egs. (2) and (3).

In the specific case discussed in this paper we use
PMMA as the solid material, the liquid is water and the
gas is air. This configuration has the physical parame-
ters given in Table 1.

The function defining the shape of the contraction
r(z) is depicted in Fig. 3 where the corner arc length A4;
is defined.
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| Parameter |  Value | Unit |
g T25% 103 | Jm 2
Osg 38.9 x 1073 | Jm™2
ol 16.5x 1072 | Jm™2
0 720 -

Table 1: Physical parameters for air-water-PMMA con-
figurations Refs. [5,6].

X

Figure 3: Specific definition of the shape function r(z)
defined through the tapering angle 6; and a corner
length A;. The shape consists of three straight line seg-
ments and two circular arcs.

4 RESULTS

To illustrate some of the results obtained the current
analysis we restrict the analysis to a few changes in pa-
rameters. The geometry is defined with D = 300 pm,
d = 150 pm and the corner length 4; = 30 um. The
solid is PMMA, the liquid is water, and the gas is air
and only one initial bubble volume is used. The aim of
the analysis is to optimize the tapering geometry with
respect to the tapering angle 6y, i.e., find the optimal ta-
pering angle to reduce the force needed to get a bubble
through the contraction.

x10°

Figure 4: The total energy vs. zcp, for 6; = 20°.

In Fig. 4 the total free energy of the system is de-
picted for 6, = 20°. A constant zero point energy Ey has
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Figure 5: Balancing force F' vs. Zcp for 8; = 20°.

been subtracted. In Fig. 5 the corresponding balancing
force F' given by Eq. (3) is plotted as a function of zcm.
The force is always negative meaning that the bubble is
pulled towards the narrow segment.
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Figure 6: Bubble position in the channel geometry used
in Figs. 4 and 5 for six different center of mass coordi-
nates.

Fig. 6 shows the bubble at six different positions,
these positions are marked on Figs. 4 and 5 with small
dots.

In Figs. 7 and 8 the tapering angle is changed from
20° to 33°. For 230 um < Zem < 290 um the force is
positive meaning that there is a potential energy barrier.

In the spirit of the previously discussed results Fig. 9
depicts the maximal force for a given channel configura-

Nanotech 2003, Vol.1, www.nsti.org, ISBN 0-9728422-0-9



s 4 i . . . s " " N .
100 150 200 250 300 _ 350 400 450 500 550 600
cm

Figure 7: The total energy vs. Z¢m for 8; = 33°.
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Figure 8: Balancing force F' vs. z¢m for 6; = 33°.

tion defined by the tapering angle 8;. The graph clearly
shows that some tapering angles ease the passage of bub-
bles. An optimal tapering angle window is present for
the interval 14° < 0; < 23° for the geometrical configu-
ration defined by D, d, and A;. For angles greater than
about 24° the maximal force is seen to increase dramat-
ically. This transition corresponds to a configuration
where the bubble can span the entire contraction region
(V; # 0for all j see Fig. 2). In this regime the theoretical
results obtained in Egs. (6) and (7) have been compared
to the numerical results and are seen to concorde.

5 CONCLUSION

The effects of geometry on the quasi-static motion of
bubbles through a microchannel contraction are mod-
elled. It is illustrated that an optimal design may be
found for a specific geometry. The method used is very
general and may be extended to other geometries. The
model may also be extended to include wetting layers
as used in Ref. [7] or may be used fore pore modelling
as in Ref. [8].
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Figure 9: The maximal balancing force as a function of
the tapering angle ;. Detailed pictures of the situation
at the point A is given in Figs. 4 and 5 and for the point
B in Figs. 7 and 8.
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