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ABSTRACT

The dynamics of polymer drops in micro channel in
steady-state and transient shear flow conditions are
investigated using the Dissipative Particle Dynamics (DPD)
method. The polymer drop is made up of 10% DPD solvent
particles and 90% finite extensible non-linear elastic
(FENE) bead spring chains. With FENE chains, shear
thinning and normal stress difference effects are observed.
For a polymer drop in steady-state shear field, the
relationship between the deformation rate (D) and the
Capillary number (Ca) could be divided into linear and
nonlinear regimes. As the shear rate increases further, the
drop begins to elongate; a sufficiently deformed drop will
break up, and in the mean time, possible coalescence may
occur for two neighboring drops. In a shear reversal, an
elongated and oriented polymer drop retracts towards a
roughly spherical shape. Due to the soft interaction of DPD
particles, the tumbling phenomena of the polymer drop is
not apparent even for large Ca .

Keywords: Droplets, Suspension, Dissipative Particle
Dynamics.

1 INTRODUCTION

Dissipative Particle Dynamics (DPD) [1] has emerged
as a promising new technique for modeling rheologically
complex liquids, such as liquids with interfaces. However,
several DPD simulations considered only a Newtonian drop
immersed in an immiscible Newtonian fluid [2-3]. There is
still no information about the polymer drops evolution in
shear fields with DPD method. In the present study, the
DPD method is used to investigate the dynamic behavior of
a polymer drop in micro channel under shear field
conditions.

2 NUMERICAL SIMULATION
2.1 DPD System

In the DPD system, the basic structural unit is a set of
discrete momentum carriers called particles that move in

continuous space and discrete time-steps. The momentum
carrier is a coarse grained entity of equal mass m placed in
a 3D simulation domain. The particle’s motion is assumed
to represent the collective dynamic behavior of a very large
number of molecules. Three interparticle forces act upon
the particles, which are called dissipative force, random
force and conservative force. Each particle moves along its
new velocity for a certain time-step after the collision of
two particles. The computation is carried out by solving
Newton’s equations of motion for each particle for a large
number of time steps, making sure it is sufficient to get
convergence of the system properties. The system
properties, such as viscosity, pressure and interfacial
tensions, could be obtained by statistical average of the
positions, velocities or forces of each particle at each time
step. DPD conserves not only the number of particles but
also the total momentum of the system, and satisfies
Galilean invariance, and the detailed balance equations.

2.2 FENE Chain Model

By introducing bead-and-spring type particles, polymers
can be simulated with the DPD method. The FENE (finitely
extensible nonlinear elastic) model is designed to produce a
non-Newtonian fluid that is tractable for computer
simulation. The FENE spring force is used to impose a
finite maximum extension for the chain segment. In the
FENE chain, the force on bead i due to bead ; is

Hr,
Fijs == - 2 M
1=y /7,,)

where H is the spring constant, and 7, is the maximum

length of one chain segment. The spring force increases
drastically with 7, /7, and becomes infinity as rylr, =1

2.3 Binary Immiscible Fluids

Immiscible fluid mixtures exist because individual
molecules attract similar and repel dissimilar molecules.
The miscibility of the two fluids is controlled mainly by the
interaction parameter o between the drop and the
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surrounding fluids, ¢ is a maximum repulsion between two
particles. In order to model immiscible fluids, we adopt the
method which introduced a new variable, called the “color”
according to Rothman-Keller [4]. When two particles of
different color interact, we increase the conservative force,
thereby increasing the repulsion, that is,

{ao if particlesi and j are the same color @

v a, if particlesi and j are different colors

The two phases would be completely miscible if
a, = a, and almost entirely immiscible if «, exceeds «,
appreciably.

2.4 Simulation Procedure

The channel sizes are 40x20x 30 units (7 ), as shown

in Fig. 1. In the present study, the polymer drop consists of
118 FENE chains, and each chain is made up of 16 beads.
The polymer drop is a solution of 90% concentration.
Beside the FENE chains, there are 208 particles
representing the solvent within each drop. In essence there
are 2096 particles comprising each drop. Fluid occupies
the remaining space in the channel, represented by 96000
simple DPD particles. A shear flow is generated by sliding
the plates in opposite directions. Periodic boundary
conditions are applied on the fluid boundary of the
computational domain in the X and Y directions. The solid
wall is represented using frozen particles.

Figure 1: Polymer drop undergoing shear flow
between two parallel planes

3 RESULTS AND DISSCUSSION

3.1 Rbheological Properties

Fig. 2 shows the polymer solution viscosity as functions
of the shear rate. It can be clearly seen from this figure that
the fluid is shear-thinning for this range of shear rates. The
shear-thinning behavior can be described by a power-law
relationship as following

n=Ay™ 3)

with the power-law index 7 0.139.

Fig. 3 shows the first (N,) and second (N,) normal
stress differences against the shear rate. N, predicted in the
present study is positive, whereas N, is almost zero and
slightly negative. N, can be fitted to a power-law similar to

that observed for viscosity in the form N, =By™. The
value for m is about 1.56 in the present study.
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Figure2: Polymer solution viscosity as
functions of shear rate
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Figure 3: First and second normal stress
differences
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Figure 4: Two immiscible fluids and their
interfacial tensions

3.2 Interfacial Tension

The interfacial tension increases with the increasing of
a between the two fluids, shown as in Fig. 4. For the same
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value of a, the interfacial tension of the fluid with polymer
chains is always larger than that of the solvent.

3.3 Drop in a Steady State Shear Field

The first theoretical analysis of drop shape in shear flow
was proposed by Taylor, who presented a small deformation
analysis restricted to Newtonian fluids. The shape of the
sheared drop would be governed by Capillary number,

Ca=T1R 4)

FAB

where 7, is the viscosity of the medium, ¥ is the shear rate,
R is the radius of the undeformed drop, and T, is the
interfacial tension. Another dimensionless group governing
the shape is the viscosity ratio, A =mn,/n,, n, being the
viscosity of the drop.

Within the limit of small deformations according to
Taylor’s theory, the drop is an ellipsoid with the major
radius a oriented at an angle @ of 45° with respect to the
velocity gradient direction. The degree of deformation is
represented by the parameter D = (a - b)/(a + b), where b
is the smallest radius of the ellipsoid. Taylor’s theory
yielded the following well-known expression for the
steady-state value of the deformation parameter D as a
function of A and Ca

_194+16
164 +16

Ca (5)

The predictions of the theory start soon to deviate from
experimental observations. This discrepancy is not
unexpected, since Taylor’s theory is supposed to be valid
only in the limit of Ca <<1.
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Figure 5: Variation of D with the Capillary
number Ca

3.4 Deformation of Drop

In Fig. 5, D is plotted as a function of Ca . The Capillary
number is calculated with I'=2.806. Fig. 5 could be

divided into linear and nonlinear regimes according to the
relationship between D and Ca, which is in accord with
the theoretical prediction. The drop consists of many FENE
chains, due to the chain entanglements, the polymer drop is
not easy to deform, the Capillary number for the linear
regime is Ca ~ 0.7, larger than that of the Newtonian drop.

3.5 Drop Breakup

The ellipsoidal shape of the drop distorts with the
increasing of shear rate, and necking may develop. When
that happens, the drop may breaks up into several droplets.
In the present study, the breakup occurs when Ca >0.9.
Fig. 6 shows the breakup process of the drop. The drop is
firstly stretched and then breaks up into new droplets. But
the droplet 1 is not stable and it coalesces with droplet 2
soon afterward to form a new droplet. In the mean time, a
new droplet 3 is developed from the most of the stretched
drop. The dynamical equilibrium between breakup and
coalescence results in a steady-state average droplet-size
distribution, as shown at 7 =780, two small drops with
approximately same size are relatively stable. From Fig. 6
we also noted some threads are developed between the
droplets.

Computational results of Clark [3] show that there is a

critical Capillary number, Cz®(the minimum value of Ca
required to actuate the breakup process) of about 0.26, for a
Newtonian drop. In our simulation the critical Capillary
number is 0.9 for the polymeric drop.
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Figure 6: Evolution of a polymer drop breakup under steady
state shear field

3.6 Transient Deformation of Polymer Drop
under Shear-flow Reversal

In the present study, the shape evolution and
orientation of a polymer drop under transient shear-flow
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reversal condition are also considered. The shear rate is
reversed after a steady state in the deformed drop has
been reached. The study of this flow history can provide
insight into the basic mechanism of drop dynamics. The
sketch for the transient shear flow is shown in F ig. 7. The
initial zero shear rate (Region 1) serves to generate an
equilibrium state of the drop.
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Figure 7: Shear history regimes imposed

Fig. 8 shows the drop deformation as viewed from the
vorticity direction (Y direction) under a flow reversal, with
shear history as sketched in Fig. 7. During shear rate
reversal the elongated oriented drop retracts towards a
nearly spherical shape (¢ ~360), and then to be stretched
again by the flow, changing to a new orientation. In Fig. 8,
Ca ~0.45. The same phenomena have been observed by
Guido et al [5] under flow condition where there is a shear
rate reversal. In their case, Ca=~0.20, the drop is
Newtonian. Considering the polymer drop in the present
study, Ca is expected and indeed it is higher.

In Guido et al’s [5] work, another case was reported and
it is quite different from the previous one that has just been
discussed. The drop remains elongated throughout the
evolution for Ca=0.4. The drop’s major axis rotates
counter-clokwise towards the new steady state. The path of
this opposite to that one would observe for a rigid elongated
body subjected to the same flow field. In the present study,
when Ca ~ 0.6, However, the tumbling behaviour has not
been observed apparently. This may be due to the fact that
in DPD system the repulsion force is soft when compared
to the real molecule force.

4 CONCLUSIONS

Using the Dissipative Particle Dynamics, we investigate
the evolution of polymer drop under a shear field. The
appropriate non-Newtonian behaviour, shear thinning and
normal stress difference, are all observed by using the
FENE chain model into the DPD system. In the present
study, both viscosity and first normal stress difference obey
the power law relationship with the shear rate, with the
exponents being —0.139 and 1.56 respectively. Rothman-
Keller “color” scheme is used to model the immiscibility of
two fluids by changing a parameter «. The interfacial
tension of the polymer drop is always greater than that of

Newtonian drop keeping all other conditions. Because of
the entanglement of the chains, the linear regime for a
polymeric drop under a steady state shear flow is
considerably larger than that of Newton drop. The
dynamical equilibrium between breakup and coalescence
results in a steady-state average droplet-size distribution.
The threads occurring in the breakup process could be
simulated in the DPD system. For the polymer drop under
shear flow reversal, the deformed polymer drop retracts
towards a roughly spherical shape firstly, and then it
deforms and orients in a new direction. The tumbling
phenomena of the polymer drop is not apparent even Ca is
large enough; this may be due to the soft repulsion forces
between the momentum carriers.
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Figure 8: Evolution of a polymer drop under flow reversal
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