Using very large arrays of intelligent sensors

R. M. Newman"

" School of Mathematical and Information Sciences, Coventry University, Coventry CV1 5FB, UK,
R.M.Newman@coventry.ac.uk

ABSTRACT

Recently several authors have turned their attention to
the design problems of very large arrays of intelligent
sensors, such as would be suitable for inclusion as an
integral part of a ‘smart structure’. Such systems have
architectural and data throughput advantages, but to be used
effectively need to be designed so as to be ‘controllerless’
and ‘decentralised’. This paper explores some of these
design issues, and illustrates how the system properties of a
solution to one of them can be described using an
established formal method, the pi-calculus.

Keywords: Intelligent sensors, sensor arrays, formal
specification, fault tolerance.

1 INTRODUCTION

In 1994 the author patented an ‘intelligent vibration
sensor’ [1]. The device was essentially an accelerometer
with integrated analog and digital processing capability as
shown in Figure 1, which allowed a large proportion of the
diagnostic functions of a complete vibration monitoring
system to be localised at the accelerometer.

This development was a response to one of the major

which expanded to meet the number of sensors used. By
localising signal processing and reduction the data
communication bandwidth was also reduced.

At the time, the proposal was at the limits of available
integration technology, and the patent was not utilised.
With current fabrication processes it is feasible to integrate
a micromachined accelerometer along with a substantial
processing capacity onto a single chip making the
intelligent sensor a realistic and very economical
possibility. In fact, such a device could be sufficiently
inexpensive to make possible the building of systems using
much greater numbers than considered before, given the
open ended processing capacity of such systems. This paper
considers the properties and some of the potential of such
systems

2 AN ARRAY SENSOR

An amendment to the original intelligent vibration
sensor architecture is proposed, which consists of the
addition of three further communications links and a
dedicated communications processor (Figure 2). The device
then becomes an ‘intelligent array vibration sensor’, which
can be connected together in a square, two dimensional
array of sensors of any size required (Figure 3), which
could be integrated permanently into the fabric of the

Accel- Analog

erometer

DSP

signal
conditioning

Network
(e.g. CSMA)

Figure 1: Intelligent Vibration Sensor

problems encountered with design of such systems at the
time. The number of accelerometers typically used in a
system had escalated steadily, causing severe data
processing bottlenecks. An array of intelligent sensors
provided a parallel machine, the processing capacity of

machine or vehicle under test, the main constraints being
those of power consumption and the ability to calibrate
sensors and handle their failure. Previous work by Gaura et.
al. [2, 3] shows how the individual sensors might be
calibrated and linearised using neural network methods.

Nanotech 2003, Vol.1, www.nsti.org, ISBN 0-9728422-0-9

Accel-
erometer

Analog DSP Commun-
signal] ications

. Processor
conditioning

Figure 2: Intelligent Array Vibration Sensor (IAVS)

Such an array may be used in a number of ways.

e The large number of processors in the array
may be used to enhance reliability by allowing
for redundancy. Means would need to be
developed for automatic detection of faults and
allocation of tasks to adjacent sensors. This
possibility is dealt with later in the paper.

o Different analysis tasks may be distributed to
different processors within the array, allowing
a single system to perform several analyses
simultaneously.

e Recognition and analysis algorithms might be
distributed to the array as a whole, using the
complete system as a ‘pattern recognition’
device for different spatial vibration patterns.
Such patterns are often diagnostic of particular
mechanical faults, and could be detected by
such means.

Systems are likely to use all three of these possibilities,
providing them with specialised processing and an element
of redundancy, providing powerful diagnostic procedures
with graceful degradation in the case of individual sensor
failure.

3 DECENTRALISED FAULT DETECTION

Several authors have discussed the issues of designing
and using systems comprised of very large arrays of
intelligent sensors[4, 5, 6]. If an array of sensors is to be
built which can function independently of a master
controller, then decentralized means of handling the
functions of that controller must be found. One such
function is detection of faulty sensors, and their removal

Four serial links
(N,S,E,W)

from the array [7]. One convenient way to model such a
system is as a collection of concurrent processes. This can
lead simply to programmed solutions from an appropriate
formal specification, in an appropriate programming
language [8].

This next section develops a means for handling this,
described in such a formalism 7-calculus [9]. The details of
this notation are not given here, but are clearly explained in
the cited work.

Consider a rectangular array of smart sensors, S;6-S, .2
section of which is illustrated below.

Y

Figure 3: A sensor array

A sensor not at a border, Sj; is connected to its four
neighbours, S;;;,S;:7,S8:,.1,5i,+1- by four bi-directional links
(or eight unidirectional ones). These are shown as direct
physical links, although in practice some sort of multi-drop
network might be more practicable, the links shown are the

Nanotech 2003, Vol.1, www.nsti.org, ISBN 0-9728422-0-9

logical links between a sensor and its neighbours. The
processing for each sensor consists of several tasks, data
collection Data, data analysis Analysis, sensor diagnostics
Diagnosis, and data communication Communications.
These tasks are described using the process algebra, 7
calculus. All definitions are parameterised on the co-
ordinates of the sensor in the array, i,j where necessary.

First, the data collection task. Its precise nature is not of
interest to this discussion. Generically, it will consist of
reading a sequence of values from the sensor itself,
collation of them into a packet of data, and transfer of that
data to the analysis task. If we assume that the sampling
from the sensor is internal to this task, the only externally
visible action is the transmission of the packet, packet, so
Data can be defined in 7 calculus as follows.

Data = newd(d |\d.packet .d)

This simply denotes that the task just sends a packet of
data and repeats, indefinitely. Niceties of initialisation and
termination are ignored.

For the purpose of this definition, we consider the
analysis and diagnostic tasks together, since they use
common data, and separating them will require replication
of that data. Externally the combined task receives a packet
of data from the sensor and also a larger packet, which will
be called a frame of data, from the communications
interface. It then performs the diagnostic or analytical
action and sends data to the communications interface, then
repeats. It is defined as follows.

Analysis = new a,b,c(a
['(a.b.packet.c.processed . sync .a)
['(b.frame.c))

Diagnosis = new d(d |!(d.sync.d + d .remove))

The analysis produces a packet of processed data, which
will include any reduced output required, and possibly the
original sensor data, for the purposes of diagnosis or
identification of other sensors. Before repeating the AD
task, it is required to synchronise with the diagnostics.

The diagnostics task either produces a good diagnosis,
in which case it does nothing but synchronise with the
analysis and repeat, or detects a fault, when it sends a signal
to remove this sensor from the array.

We now define a simple version of the communications
task. This first version has no fault tolerance built in. Its
function is simply to collect data from this sensor and the
neighbours and to transmit this sensor’s data to its
neighbours.

Communications; ; = IN; ; | OUT, ;
IN; ; = new done,start

(start |\start(ElL, ; | WI, ; | SI; ; | NI; ;| INFIN))

El; ; =w, ;_j.done

WI, ; = e ;.1.done
SI; ; = ny,y ;.done
NIi,j = Si+1’j.done

INFIN = done.done.done.done. frame.start

OUT, ; =new done,start

(start |\ start.processed.
(EO; ; |WO; ;| SO, ;| NO; ; | OUTFIN)

+ remove)
EO; ; = e, ;.done
WIi,j = w;,j.done

S1; ; =si,j.done

NI, ; = ni,j.done

OUTFIN = done.done.done.done.start

The IN process collects data from each of the four
neighbours, in any order, then sends the resultant frame to
the Analysis process, and repeats continuously. The OUT
process collects a processed frame of data and transmits it
to each of its neighbours, in a arbitrary order, and then
repeats, unless it receives a remove action from Diagnosis.

Finally we assemble together the complete model of a
single sensor, which is described by
Sensor; j =new packet, processed, remove, sync,

Jframe (Data | Analysis | Diagnosis | Communications; ;)

It will be noticed that externally the only visible actions
of Sensor;; are its own four outputs, n;;,5s;;, e;; and w;; and
the four inputs nij,Sij €ij and Wij.

Sensors signal a fault condition simply by tuming off
outgoing communications. The entire network is
synchronous, with each cycle consisting of every sensor
communicating in both directions with its neighbours. A
sensor will therefore detect a fault in a neighbour by its
failure to communicate in a cycle or, more specifically a
second communication from another neighbour before all
four communications in the cycle have been completed.
This can be accomplished with the following modification
to the IN process.

Nanotech 2003, Vol.1, www.nsti.org, ISBN 0-9728422-0-9

El; ; =w; ;_y.done.EIMON
EIMON, ;_, =
INFIN = done.done.done.done.

i,j=1

w; j_1.deadone+ stopmon

stopmon.stopmon.stopmon.stopmon.start

The other three input processes are adapted in the same
way. After receiving its communication, each process
monitors for a second on the same link and, if found,
notifies a dead process. These monitor processes are
stopped only after all four communications in the cycle
have been detected.

Having thus detected a failed sensor, it remains to
reconfigure the array to remove that sensor. The simplest
way to do this is simply to receive from the sensor on the
other side of the failed one. The precise nature of the
interpolation or other processes used to reconstruct the data
for the failed sensor does not concern us here.

We can describe this reconfiguration by using the ability
of the m-calculus to describe mobility of processes, by
means or communication of names in the actions or
messages. Rather than writing the names of the four
neighbours in the equations, we allow them to be received
as each instance of the IN process is started, as follows.

Here e’ w', n', s’ are the recalculated link addresses,
bypassing the failed sensor. The monitor starts a new IN
process with these recalculated links then ensures that other
monitors die therefore avoiding replication of the new
process. A monitor receiving a die action sends out a new
one, to make sure all monitors die (or in the case of the last
one, is simply deadlocked, since die is restricted, and there
are no further processes with a complementary action).

IN; ; =new start((start(w; ;_;,€; j1si1 j>Sis1, ;) |
!start(e, w, n,s>.new done,dead,stopmon,die.
(EI|WI | SI | NI | INFIN))

EI = e.done. EIMON

EIMON = e..start(e',w', n',s').g'e + stopmon + diedie
INFIN = done.done.done.done.

Stopmon .stopmon . stopmon . stopmon .

start(e,w,n,s)

Thus, using a simple, fail safe protocol (in that sensors
which simply fail to work are switched out of the array
automatically), it is possible for the array to reconfigure
itself in a distributed manner, with no central control over
the process.

4 CONCLUSION

This paper has explored some of the issues concerning
the systems design of large arrays of intelligent sensors,
particularly those of decentralized control and fault
handling in such arrays. A simple, decentralized,
controllerless method of fault detection has been described,

and developed in an established formalism, the m-calculus,
in a simple and concise manner. Such a specification would
enable the properties of such a system to be explored using
the m-calculus or an associated modeling tool. It appears
likely that some of the other issues discussed should be
amenable to a similar treatment.

REFERENCES

[1] Newman, R.M. and Robinson, B. (1994)Intelligent
Vibration Sensor, U.K Patent No GB 2251071, Grant Date
3 Aug 1994

[2] Gaura, E. Rider, R.J. Steele, N. (2000) Closed-loop
neural network controlled accelerometer, Proceedings of
the 1. Mech. E, Part I, Journal of Systems and Control
Engineering, vol. 214, no.12, pp.129-138.

[3] Gaura, E. Rider, R.J. Steele, N. (2000). Developing
smart micromachined transducers using feed-forward
neural networks: a system identification and control
perspective. The IEEE International Joint Conference on
Neural Networks, IJCNN’2000, Proceedings, ISBN O0-
7695-0619-4, Vol. IV, pp. 353-358, Como, Italy.

[4] M. Chu, H. Haussecker, F. Zhao, (2002) Scalable
information-driven sensor querying and routing for ad hoc
heterogeneous sensor networks. Xerox Palo Alto Research
Center Technical Report P2001-10113, May 2001.

[5] Estrin, D., Govindan, R., Heidemann, J., Kumar, S.,
(1999) Next Century Challenges: Scalable Coordination in
Sensor Networks. Proc. ACM International Conference on
Mobile Computing and Networking, (Mobicon 1999) pp.
263-270.

[6] Wang, A, Chandraskan, W (2002) Energy Efficient
DSPs for Wireless sensor networks, IEEE Signal
Processing magazine, July 2002, pp. 68-78.

[7] Jaikaeo, C., Srisathapormphat, C., Shen, C.-C.,
(2001) Diagnosis of Sensor Networks, Proc IEEE
International Conference on Communications, Helsinki,
Finland, June 11--14, 2001.

[8] Newman, R. M. (1998) The ClassiC Programming
Language and Design of Synchronous Concurrent Object
Oriented Languages, Journal of Systems Architecture,
Elsevier Scientific, September 1998.

[9] Milner, R, (1999), Communicating and Mobile
Systems: the Pi-Calculus, Cambridge University Press,
Cambridge, England.7. Elson, J. ,Estrin, D. (2001)Time
Synchronization for ~ Wireless Sensor Networks,
Proceedings of the 2001 International Parallel and
Distributed Processing Symposium (IPDPS), Workshop on
Parallel and Distributed Computing.

Nanotech 2003, Vol.1, www.nsti.org, ISBN 0-9728422-0-9

