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ABSTRACT

This paper focuses on problems of hardware
implementation of neural networks in the re-programmable
structures. The project presented here is an attempt to
realize this task in a System—on—Chip device. Great concern
has been put on the design’s flexibility, so that it would be
applicable in a number of not predetermined jobs,
independently from the level of their complexity.
Programmable features that have been introduced to the
design enable users to suit the system to their personalized
demands.

Much attention has been also devoted to the practical
application of the neural network in the System for
European Water Monitoring. The constructed system
improves CHEMFET sensors’ behavior, whose reliability is
still not satisfactory enough.

Keywords: neural network, system—on—chip, hardware/software
co—design, SEWING, CHEMFET sensors.

1. INTRODUCTION

The goal of this project is to construct programmable
multi-layer perceptron (MLP) network and implement it in
the re-programmable structure. It must be noted that only
few devices based on the neural networks’ (NN) principle
have found their commercial realization in the form of
integrated circuits (IC). Fully hardware implementation
meets numerous barriers which limit networks” capabilities
and constitute a remarkable challenge for designers. A need
for dealing with the problems of limited logic resources
appears particularly when using digital equipment.
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Figure 1: Basic blocks of the AT94K [1]

This project explores possibilities of neural network
implementation in the Atmel’s AT94K Field Programmable
System Level Integrated Circuit (FPSLIC, seec figure 1),
that belongs to the group of devices which share the
common name System—on—chip (SoC). This new class of
electronic tools, which integrate in one silicon wafer entire
microprocessor systems, facilitates NN construction and
their application. The cooperation of the microcontroller
unit (MCU) and field programmable gate array (FPGA)
helps to overcome space— and interconnection—limitations.

2. SPECIFICATION

Figure 2 presents possible architecture of the multi-layer
perceptron (MLP). The structure depicted in the figure
comprises of two layers of neurons (the output and the hidden
layer) and the set of input nodes. Both the input and the output
vectors of the hidden layer are extended on the constant
value, what enables neuron’s threshold modification.

Figure 2: Example of the MLP structure

Structure in this or similar form is able to solve many
non-linearly separable complex problems (should more
burdensome jobs be attained larger networks have to be
used). The hidden layer transforms input vectors into the

space where they are linearly separable. Signals are then
propagated through the output set of neurons that execute
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final classification [2], [3]. The formal description of a
neuron’s behaviour may be expressed in the equation (1):
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The constructed system enables achieving a two—layer
network of perceptrons activated in the hidden layer by the
bipolar sigmoid function:

1
= 2
7@ 1+exp(—x) @
and by the linear function in the output layer:
fx)=a-x. ®)

It is expected from the user to declare the numbers of
neurons of the hidden (N) and the output (M) layer and specify
the length of the input vector (I). Though the numbers I, N and
M are optional, the project in the realized form does not allow
exceeding the maximum values: L, N = 9, M = 10. This
restriction is, above all, the matter of the micro-controller’s
program structure and may be easily extended on higher ranges.

Network’s training is not the part of the project as far
as its implementation in hardware is concerned. It is
presumed that new weights, appropriate to the current
application, are calculated for the desired MLP architecture,
according to the BP algorithm on the PC—platform and then
downloaded directly to the project together with the
design’s properties — I, N, M.

3. IMPLEMENTATION
3.1. System Partitioning

Systems based on the conjunction of microprocessor and
logic arrays require a specific programming approach. Just after
formulating project’s specification, designer needs to divide the
tasks to be realised between the processor and the blocks
imtegrated with it. Such an approach is called hardware/sofiware
co-design. The partitioning of this project — shown in figure 3 —
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Figure 3: Project’s partitioning

Programmability of the MLP structure implies that in
case of any new application it needs to be reconstructed
according to the current numbers: I, N and M. The system
should thus ensure neuron’s model flexibility, so that it could
accept input vectors of dynamically altered length (which
depends on I and N) and multiply them by the pertinent
weight vector. Moreover, number of neurons in both layers
required for the ultimate MLP network’s instantiation is also
application-dependent (parameters: N and M). This suggests
employing some basic neural cell which could be used as a
standard component for building any larger network.

3.2. Hardware Part

The experiments carried out on AT94K proved that fully
parallel neuron’s model (i.e. a model where multiplications
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Figure 4: Single perceptron model
It comprises of the set of 10 registers containing input

4-bit counter to start incrementing its contents. The counter
selects through the multiplexors the subsequent pairs of
inputs and weights which are multiplied — their products are

terminate counter’s operation and reset it. The contents of the
accumulator is the address for the ROM-type memory, where
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the values of the activation function are stored. The data
output of this memory is the response of the current neuron,

which is ready to be captured.
3.3. Software Part

As it has already been mentioned the software part is
responsible for creating a multi-layer structure basing on
one neuron instance. Perceptron model implemented in the
FPGA is used number of times required to achieve the
desired NN architecture. The main algorithm realized by
the microprocessor is parameterized by the values of I, N
and M, declared at beginning of the program. These three
numbers define neurons sizes and their amounts in both
layers. The first stages of the algorithm allow defining (by
the appropriate code modification) network’s parameters
and weight matrices in both layers. Next steps are executed
after system’s initiation by some external device (figure 5).
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Figure 5: Overall way of operation

When such a START condition is detected, MCU
receives input vector from external environment. After this
process is finished, calculations in the hidden layer are
performed. With respect to the actual values of I and N,
micro—controller loads appropriate FPGA-implemented
registers (Bias — Weight 8) with the weight vector
compounds declared in the program and stored in data
RAM. Consecutive neurons responses are captured from
FPGA and stored in micro—controller’s data memory. When
the last neuron in the hidden layer is reached, system
continues with the computations in the output layer. MCU
modifies the contents of the input registers (by loading
them with the output vector of the hidden layer) and
programs weight registers with the weight vectors for the
subsequent output neurons. If the response of the last
neuron in the output layer is ready, the output vector is
transmitted back to the external emvironment and the
operation terminates.

4. APPLICATION

An inspiration for this project and creating a neural network
as a hardware structure has been the SEWING project (System
for European Water Monitoring). European-wide researches
aim to create a cheap and generally accessible system for
monitoring and early warmning of water pollution [4]. The
CHEMFET scnsors that will be used in the project and which
are supposed to be responsible for detecting ions of pollution are
not selective enough yet. Sensors react not only to one (main)
ion but they are also sensitive to some other (disturbing) ions.

The behavior of the CHEMFET sensors may be
described by the semi—empirical Nikolsky equation (4) [5]:
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where:

E, — constant reference potential,

R — universal gas constant,

F — Faraday’s constant,

T — absolute temperature,

z; — electrovalence of ions (the same for all ions in
the interfacial equilibrium) ,

¢; — concentration of the main ion detected,

¢; — concentration of the disturbing ion,

k;; — selectivity coefficient.

Figure 6 presents the influence of one disturbing ion —
of the constant concentrations ¢/ = 10” and ¢/ = 107, and
the selectivity coefficient is in both cases k; = 0.01 — on
the sensor’s indications.
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Figure 6: Ideal and corrupted CHEMFET sensors responses

As it can be seen, the difference between the ideal
sensor responses and the corrupted ones emerges mainly in
the lower range of the main ion concentrations. The higher
concentration of the disturbing ion is, the larger is the
deviation from the ideal flow. For the higher main ion
concentration values, where the component responsible for
taking the interfering ion into account is significantly lower,
no perturbations are observed.

Since it is difficult to estimate particular ion
concentration, relying only on the response of one sensor,
information from the other is needed. It cannot be excluded
that sensor’s indication is violated by ome or more
disturbing ions. Different than expected voltage on a sensor
output may be caused by the enriched concentration of one
disturbing ion or by the existence of two disturbing ions but
in smaller proportions. Correct interpretation of the sensors’
outputs by the traditional processing units appears quite
complicated, whereas an attempt to use a neural network
may occur successful.
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Let us suppose that there are three sensors, sensitive to
ions X (concentration cy), Y (c¢y) and Z (cz), responding
with the values v(X), v(¥), v(Z), and the expected values
relative to the real concentrations are e(X), e(Y), e(Z). If the
coefficients kXY N kxz, kyx, kyz, kz;x, kZY define mutual
relations between senmsors indications and ions
concentrations, following equations may be formulated
(after evaluating constant expressions in the equation 4):

W(X) =0.125+0.057-log(cy +kypcy +kypc,),
W) =0.125+0.057-log(c, +kycy +hyc,) O
W(Z)=0.125+0.057 -log(c, +kycy +kzcy )

Considering the above, expected responses e(X), e(Y),
e(Z) can be derived from the following, non-linear equations:

e(X) = £,((X),v(¥),"(2))=
ﬁ(CX>CY:cz’kxy>kxz’kmr:kr2>kzx,kzr)>

e(t) = f,(W(X),v(@),»(2))=
fz(cx>cyacz’er’kxz:er’kyz,kzpkzy )>

e(Z) = £,(\(X0),v(¥),(2))=
.fs(cX’cY’cZ’kXY ’kXZ’km”kﬂﬂkZX’kZ}’)

Provided that there are no other polluting ions (i.e.
except for X, Y and Z) in the investigated environment, the
system obtains data from all sensors, and the number of
teaching pairs is big enough throughout the training process,
the network should adjust itself to the selectivity coefficients
and realize functions defined by the equations (6).

As the CHEMFET sensors are still under development, not
many experimentally obtained sensors responses are available.
Consequently, for the simulation purposes, teaching pairs had to
be generated manually. Table 1 presents three example test
vectors (column I), the desired network’s output (column IT) and
the results of calculations in the trained network (columns IV —
MATLAB simulation and VI — hardware simulation). To
evaluate the quality of network’s performance, the mean—square
error criterion was used to calculate deviations of:

o input test vectors from the expected results (column IIT):

MSE_I1=Y[x0)-d0)f, i=4BC, ®
. anmtvedorszﬁomtheexpectedmﬂls(oohnnnsVaIﬂVﬂ):
MSE_0=3[()-a()f, i=4BC. ®

As it may be judged from the analysis of the table 1,
the results obtained in MATLAB calculations approximate
quite properly the expected values (corresponding to the
real main ions concentrations). In some cases, network may
respond with still misleading results. Even then however,
the MSE is significantly reduced. Possibly, if more
effective training methods were used, or more epochs were
launched, network’s behavior would be even more reliable.

©

Table 1: Simulation results

Ion I I I v \' VI viI
X 10.177 ] 0.141 0.143 0.122
Y ]0.170 1 0.102 | 0.006 | 0.115 | 0.001 } 0.113 | 0.003
Z |0.27810.278 0.266 0.230
X | 04120410 0.405 0.452
Y | 0.459]0.459 ] 0.058 | 0.463 | 0.002 | 0.502 | 0.011
Z 10356 ]0.115 0.163 0.201
X 10313 ]0.313 0.302 0.294
Y 10.212]0.158 } 0.005 | 0.185 | 0.001 | 0.185 | 0.003
Z 10.207 | 0.165 0.164 0.113

The hardware simulation of the trained MLP structure —
when compared to the softiware one — is slightly worse.
Deviation of some of the output compounds from the desired
ones exceed reasonable level. The inaccuracies in the hardware
computations are caused by the imprecise binary
representation and binary arithmetics that evoke necessity of
rounding the weight and input values and lead to approximated
results. However, most of the output vectors are equivalent to
the expected ones and the overall error committed by the
network is lower than on the system’s input.

5. SUMMARY

The general goal of the project — an attempt to create
ncural network as a hardware circuit — has been
successfully achieved. The structure implemented in the
Atmel’s AT94K FPSLIC responds on the input vectors
according to the calculating algorithm for the multi-layer
perceptron networks. Moreover, this project showed that
the combination of the hardware and software resources
leads to efficient NN implementation. Network’s
programmability lets an end—user suit the system to custom
application. This feature enhances project’s utility
increasing the range of tasks it may solve.

The simulation results — based on manually generated
teaching pairs — are very much promising and do not
exclude its possible usage in the System for European
Water Monitoring. However, further tests should be carried
out, this time based on the real experimentally obtained
teaching pairs, in order to confirm or deny project’s
applicability in SEWING.
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