The Microchips for Alzheimer Disease Diagnosis

M. Napieralska*, M. Zubert*, A. Napieralski**, P.P. Liberski**

*Department of Microelectronics and Computer Science, Technical University of Lodz
 Al. Politechniki 11, 93-590 Lodz, Poland, {mnapiemariusz}@dmcs.p.lodz.pl
**Department of Nuclear Biology, Chair of Oncology, Medical University of Lodz
 ul. Czechosłowacka 8/10, 92-216 Lodz, Poland, ppibrary@csk.p.lodz.pl

ABSTRACT

The modern micromachined chip conception dedicated for Alzheimer disease has been presented in this paper. Additionally the simplified amyloid plaque recognition and micromachined micro-zoom has been superficial demonstrated.

Keywords: Alzheimer disease, BSE, CJD, diagnosis microsystems, micromachined micro-zoom.

1 INTRODUCTION

The Alzheimer, BSE1 and CJD2 diseases belongs to a group of neurodegenerative diseases characterised by an accumulation of extraneuronal filamentous material consisting of β-sheet proteins of various biochemical properties. Clinically, these diseases manifest as dementia is permanent state of losing cognitive functions like: a memory, an orientation, a visual spatial abilities etc. Until now, the silver impregnation techniques (e.g. according to Bielaschovsky or Yamamoto) have been used to their diagnosis. They are extremely difficult to reproduce and not specific, therefore the novel techniques free from these disadvantages and based on immunochistochemistry (using anti-PrP or anti-αβ antibodies) have been applied [2]. Unfortunately until now the diagnostics of these diseases are limited to selected laboratory centres, where the lack of quantitative diagnosis criteria is substituted by the experts’ experience.

The research presented in [2][3][4] and especially in [5] allows to describe the protein recognition model and quantitative diagnosis criteria based on dependencies between amyloid plaques and their graphical representation (see Figure 1). The obtained results have allowed elaborating the laboratory place, where the diagnosis can be made automatically. The diagnosis can be made using the standalone expert system or Internet portal facilities [5].

Proposed approach can be also effectively implemented and integrated in the single microchip, eliminating in this way expensive microscope equipment (see Figure 2). Unfortunately the dimensions of the amyloid plaques (3.6-27μm) and a currently manufactured CCD cell sensor (5-14μm) are comparable. This inconvenient can be eliminated using micromachined micro-zoom system proposed in the next part of this paper (Figure 4).

Figure 1 Exemplary microscope section of a hipokamp brain (visible amyloid plaques and dye precipitation) reproduced using immunochisto-chemistry process for different microscope magnification: (a) 132.5:1 and (b) 530:1.

1 BSE - Bovine Spongiform Encephalopathy, know as MadeCow diseases has now been transmitted to cattle, mice, sheep, and goats both orally and by inoculation, and to pigs, marmoset monkeys but not hamsters merely by inoculation [1].
2 CJD - Creutzfeldt-Jakob Disease, was first described in 1920/21 when it was known as spastic pseudosclerosis or subacute spongiform encephalopathy’ [1].
2 OBJECT RECOGNITION

The microscope object recognition has been performed in several steps (Figure 3). In order to eliminate the microscope image distortion it should be ameliorated using homomorphic filtering. Firstly the threshold image segmentation is applied using developed amyloid colour model. The hypothetical amyloid plaques are detected using morphological object properties and selected applying the fuzzy logic Madamie model. The number of detected amyloid plaque per image area is the final diagnosis criteria [5].

3 MICRO-ZOOM SYSTEM

The detection of microscope object (e.g. amyloid plaques) can be realized using proposed bellow micro-mechanical micro-zoom system. The rays emitted by the light source have been successively transmitted via the microscope section, microchip protection glass and translucent thin plate (Figure 4). The rays are deflected via the translucent

Figure 2 Proposed solution.

Figure 3 The filtering process of amyloid plaques.
Figure 4 The simplified micro-zoom operation principle.

thin plate in accordance with W. Snell van Royen law (1).

\[\frac{\sin \alpha}{\sin \gamma} = \frac{n_{\text{plate}}}{n_{\text{air}}} \]

(1)

where \(\alpha \) – the slope between the translucent thin plate and CCD matrix; \(\gamma \) - primary ray deflection; \(n_{\text{air}}, n_{\text{plate}} \) – air and plate relative deflection coefficient.

In our case the magnetic permeability \(\mu_r \equiv 1 \), hence the relative plate deflection can be preliminarily estimated for \(n(\lambda) \) idem by the following equation:

\[n_{\text{plate}} = \sqrt{\varepsilon_r \mu_r} \equiv \sqrt{\varepsilon_r} \]

(2)

where \(\varepsilon_r \) – the relative permittivity of the translucent thin plate.

In the next part of this article will be assumed:

\(\varepsilon_{rSi} = 11.7 \), \(\varepsilon_{rSiO_2} = 4.6 \), \(n_{r \text{Sapphire}} \equiv 1.78 \), \(n_{r \text{Glass}} \equiv 1.51 \) and \(n_{\text{air}} = 1.0003 \).

After some transformation the primary ray shift coefficient can be written as the follow:

\[d(\alpha) = t \frac{\sin(\alpha - \gamma)}{\cos \gamma} \]

(3)

where \(t \) – the thickness of the translucent thin plate.

The translucent thin plate can be fabricated from the different materials. In this paper, the solution

Figure 5 Exemplary translucent thin plate construction:
a) Si, sapphire or glass
b) SiO_2
c) 1xSi 75%+2xSiO_2 12.5%.

Figure 6 The primary ray shift coefficient \((d/t) \) vs. translucent thin plate slope \((\alpha) \).

Figure 7 The Fresnel transfer coefficient of the primary ray electric field intensity \((T) \) vs. translucent thin plate slope \((\alpha) \).
with silicon, silicon dioxide and presented on Figure 5
thiers joins will be taken into account. The obtained for
theses materials primary ray shift coefficients have been
shown on the Figure 6. As it can be seen the sufficient
deflection can be obtained for these materials taking into
consideration: the plate thickness, the operating thin plate
slopes (Figure 7), the material absorption (equation (4)) and
plate rigidity. Fortunately the small material transparency
and plate rigidity can be compensated by increasing the
source light intensity, CCD sensor sensitivity and additional
cross-braced frames.

\[
\frac{I(l)}{I(0)} = \exp(-a \cdot l)
\]

(4)

where \(l \) - optical path; \(I(l), I(0) \) - light intensity;
\(a \) - absorption coefficient, which for dielectric medium
depends on wavelength in the following way
\(a(\lambda) = 4\pi n_2(\lambda)c / \lambda \neq \text{idem; } n_2(\lambda) \) - imaginary
relative plate deflection coefficient \((n_2(\lambda) \ll n_{\text{plate}}) \);
\(c \) - light velocity in the free space; \(\lambda \) - vacuum
wavelength.

To obtain the image zoom the additional software
computation is required. In our approach the magnify image
can be calculated using deconvolution of the source image
for the different slope optical images using linear and
rotational motors (see Figure 8).

\[
m_{d_i,d_j}(x_1,x_2) = s(x_1 - d_1, x_2 - d_2) \otimes t(x_1, x_2)
\]

= \(m_{0,0}(x_1, x_2) \otimes \mathcal{F}^{-1}\{e^{-j(\omega_1d_1 + \omega_2d_2)} \}
\]

(5)

where \(s(x_1, x_2) = \mathcal{F}^{-1}\{S(\omega_1, \omega_2)\} \) - source microscope
section image; \(m_{d_i,d_j}(x_1, x_2) \) - registered images for
different slopes \(d_i \), \(d_j \);
\(m_{0,0}(x_1, x_2) = s(x_1, x_2) \otimes T(x_1, x_2) \) - estimated
magnify image; \(t(x_1, x_2) = \mathcal{F}^{-1}\{T(\omega_1, \omega_2)\} \)
- optical transfer function (including aperture etc.).

4 CONCLUSIONS

In this paper the one of the possible applications of the
developed amyloid plaque recognition has been presented.
In the proposed approach the model recognition has been
implemented in the single microchip solution. As the result
the protein searching and diagnosis process has been
automated. Proposed microsystem architecture can be used
in the portable system with possibility to work in the field
and make the diagnosis independent of human subjectivity.
The mass scale fabrication of proposed chip with micro-
zoom can decrease the price of the product.

Presented in this paper solution can be also used for
diagnosis other neurodegenerative diseases like CJD, BSE
and Kuru disease.

ACKNOWLEDGMENTS

The work reported in this paper was supported in part
by the Internal University Grant K-25/1/2003-DzS and
Polish State Committee for Scientific Research Grant
8T11E 022

REFERENCES

[1] The Encyclopaedia of Microbiology, Volume 4
Academic Press 1992

Grams, P. Liberski, T. Sobów, J. Grabowski: "The New
Approach To The Microscope Image Classification Of
Brain Amyloidosis Diseases By Filtering Process Of
Amyloid Plaque", X European Signal Processing
Conference - EUSIPCO'2000, Tampere, Finland,
September 4-9, 2000, pp. 95 (CDROM)

Zubert, A. Napieralski.: "The morphometric analysis and
recognition an amyloid plaque in microscope images by
computer image processing.". Folia Neuropathologica, Vol.
39 (4) 2000, pp. 183-187

Classification Of Brain Amyloidosis Diseases By Filtering
Process of Amyloid Plaque", Proceeding of the 6th
International Conference CADSM’2001, Lwów-Slasko,
Ukraine, 12 February 2001, pp. 279-282

Liber斯基, A.R. Grams,T. Sobów: "Opracowanie metody i
systemu automatycznej analizy obrazów mikroskopowych
blaszki amyloidowej, w chorobie Alzheimera oraz
chorobach wywołanych przez priony". Report for Polish
State Committee for Scientific Research Grant 8 T11E 022