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ABSTRACT

Using a recently developed all-atom forcefields for
biomolecular structure prediction we have analyzed an
approximate free-energy surface of the 36 residue head-
piece of the villin protein with stochastic optimization
methods. With an initial paramterization of the solvent
accessible surface area based solvation term we found
configurations that were lower in energy than the NMR
configuration. We then adjusted the parameters of the
solvent model to stabilize the NMR structure using a de-
coy approach and arrived at a free energy surface that is
characterized by a deep folding funnel populated by dif-
ferent three helix structures one of which is very similar
to the NMR structure.

1 Introduction

Biomolecular structure prediction remains one of the
main outstanding problems of theoretical biophysical
chemistry[l]. One of its primary goals is the predic-
tion of the three-dimensional, tertiary structure of pro-
teins on the basis of their amino acid sequence (protein
structure prediction — PSP). Experimental methods for
protein structure determination are orders of magni-
tude more involved and more expensive than sequencing
techniques. Although their number is steadily growing,
the protein database (PDB), presently contains about
13,000 spatially resolved structures[2].

Theoretical methods for PSP may be helpful to close
this gap, but accurate theoretical methods that would
permit a routine prediction of this structure remain elu-
sive, in particular at the ab-intio level. In this approach
one simulates a model for the protein, which accounts
for the intramolecular interactions of the molecule and
its interactions with the environment. Failure to fold
may thus stem from two principle sources: the force-
fleld used to model the protein may be inaccurate or
the simulation technique may be inefficient.

In this paper we report on the exploration of the free-
energy surface of the 36 amino-acid headpiece (HP36) of
the the villin protein (pdb-code: 1VII) with an all-atom
forcefield in an attempt to distinguish between these
two possiblities. HP36, an autonomously folding pep-
tide, has received much theoretical attention, since it
was the subject of one of the most ambitious attempts

to simulate the folding process using molecular dynam-
ics[3], which ultimately failed despite an enormous in-
vestment of computational resources. In our simulations
we used an all-atom protein forcefield (PFF01) [13] with
an implicit solvent model. Based on an initial fit of the
solvent model parameters we have investigated the free
energy surface (FES) of the HP36 and found a two helix-
structure, similar to those reported in[3], that was lower
in free energy than relaxed NMR structures. The failure
to stabilize the latter could thus be attributed to defi-
ciencies of the forcefield rather than to the optimization
method. We then recalibrated the forcefield parameters
in an attempt to stabilize the three-helix NMR struc-
ture. We find that this modified FES has a deep folding
funnel that is dominated by three-helix structures, even
though the NMR structure is still only a metastable con-
figuration.

2 Methodology

Traditional simulation techniques, in particular molec-
ular dynamics, have great difficulty to access the timescale
of protein folding. An obvious starting point for an
improved treatment[4] is the elimination of the explicit
treatment of the solvent molecules[5], which often con-
sumes the majority of the numerical effort associated
with the simulation of the overall system. Upon closer
inspection of this approximation, we find that the in-
troduction of an implicit solvent model has far deeper
implications on PSP than the obvious reduction of the
computational effort resulting from the reduction of the
degrees of freedom of the simulation. We note that the
overwhelming majority of the entropic contribution to
the folding process are solvent contributions, mediated
by the hydrophobic and hydrophilic effects of the differ-
ent amino acid side chains. Incorporating these terms
into an implicit solvent model we obtain in conjuction
with the internal energy of the protein a good model
for the total free energy of the system[6]. As indicated
above most proteins attain a unique stable native struc-
ture. If the protein is in thermodynamic equilibrium
with its environment, this structure must therefore cor-
respond to the global minimum of its free energy sur-
face[4]. As is well known from the simulation of many
physical systems with complex dynamics, it is possible
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to locate the thermodynamically stable state of the sys-
tem using stochastic optimization methods without re-
course to its dynamics orders of magnitude faster than
in an simulation approach(7], [8].

2.1 Biomolecular Forcefield

Over the last decades many classical forcefields [9]-[12]
have been developed to investigate numerous phenom-
ena in physical, organic and inorganic chemistry. The
difficulties encountered in PSP justify the development
of specific forcefields for the following reasons: Their
molecular building blocks, i.e. the amino acids, are well
defined and limited in number. The chemical complexity
associated with the design of a forcefield specific to pep-
tides and proteins is therefore less than that of generic
organic substances.

The details of the PFFO01 have been described else-
where[13], here we summarize its main ingredients. The
PFF01 forcefield represents all atoms except apolar CH,,
individually. CH,, groups are approximated by a single
sphere comprising both the carbon and the hydrogen
atoms (united atom approach). We have fitted the LJ
radii in PFFO1 to a subset of 134 proteins of the PDB
database. The associated LJ interaction strength was
taken from the OPLS forcefield[14]. We note that in
simulations with explicit solvent molecules there are LJ
interactions between peptide and solvent atoms. This
atom-dependent effect has been incorporated into the
implicit solvent model. Coulomb interactions are mod-
eled with group-dependent and interaction dependent
effective dielectric constants[15]. For the implicit sol-
vent model, the simplest conceivable choice assigns a
free energy of solvation proportional to the effective con-
tact area each atom of the protein/peptide has with
the solvent. We have subdivided the atom types of the
forcefield into suitable subgroups and fitted the resulting
model to the available experimental Gly-X-Gly data[5].

3 Results

We have investigated the 36 residue headpiece of the
villin protein that was recently simulated with molecu-
lar dynamics[3]. The best configuration obtained with
about a CPU week on a single PC is shown in Figure
2(b) in comparison with the NMR structure. The frac-
tion of native contacts was similar in both studies. This
comparison illustrates the increase in efficiency that can
be obtained through the use of stochastic optimization
methods, even though both simulations failed to reach
the NMR structure. We find however that the structure
obtained in our simulation has a lower (free) energy that
that of the NMR structure, indicating that this failure
is not due to a failure of the optimization strategy, but
is attributable to a shortcoming of the forcefield.

This suggests a rational decoy strategy to systemati-
cally improve the forcefield the we presently implement.
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Figure 1: Correlation between the free energies of solva-
tion between experimental data for Gly-X-Gly and two
solvent accessible surface area based models (in units
of kcal/mol) that differ in the number of atom groups
used in the fit. The PPFO01 forcefield uses the fit indi-
cated by the triangles with an RMS error of less than
0.5 kcal/mol.

Figure 2: Comparison of the (a) NMR structure and the
(b) simulated structure of 1VII.
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Figure 3: Schematic structure of the low-energy part
of the free-energy surface of HP36/1VII in the refined

energy model.

We generate a large set of “good” candidates that com-
pete with the NMR structure. As long as one of these
decoys has a better energy than the native configuration,
the forcefield must be modified to stabilize the native
configuration in comparison to all other decoys. When
this is achieved we generate new decoys by refolding the
peptide, generating new configurations that are either
yet again better in energy than the NMR structure or
ultimately folding the peptide. In the following we re-
port the preliminary results of this project.

We have created a set of decoys starting either with
stretched configurations or the NMR configuration. Some
of the latter runs were modified with an additional har-
monic constraint that limited the deviation of the sim-
ulated structure to the NMR structure to 2-3 A. The
adjustable forcefield parameters were the surface free en-
ergies that enter the implicit solvent model, which were
permitted to vary by 20% around their original values.
The rationale behind this approach was that these pa-
rameters are relatively uncertain, as they are transferred
from small-molecule data to very large systems.

Using this approach we finally arrived at a decoy set
containing about 11,000 entries that each had a back-
bone RMSD of at least 1 A with every other decoy. This
decoy set yields an approximative representation of the
local minima of the FES of the peptide. The best con-
figuration had a ficticious free-energy of -83.0 kcal/mol
(see Fig.4 (M)), the best NMR-like configuration (see
Fig.4 (N)) ranked number 3 of 11,000 and had a back-
bone RMSD of 3.6 A to the NMR configuration.

In order to analyze the FES we classified the config-
urations into families as a function of energy in order to
generate a tree-like structure that has previously been
used to analyze complex PES[16]. For all decoys below
a given energy we classify two decoys as belonging to the
same family if their backbone RMSD is less than 3 A.

M N NMR

A B o

Figure 4: Representatives of the best decoy families of
HP36/1VII

We then follow these families by increasing the energy
threshold. The resulting graph of the FES is shown in
Fig.3. At the bottom we find only the minimal struc-
ture found in the simulations, which we label M, with an
energy of -83.0 kcal/mol. This configuration is shown in
Fig. 4(M). As we increase the energy the set of decoys,
to which M belongs grows in number. At about -78
kcal/mol two additional sets of decoys appear, which
we label N and A respectively. The set N contains a
single configuration that is relatively close to the NMR
structure (backbone RMSD 3.6 A) and which we used
as a reference point to measure the backbone RMSD to
other families. The set A contains a three helix config-
uration with comparable energy (-78.7 kcal/mol) and a
backbone RMSD of 8.7 A to decoy N. As we increase the
energy two events can occur: First, new families appear
which have higher minimal energies. Secondly, branches
of the tree eventually unite as each family grows and
family membership is associative. The backbone RMSD
between the energetically lowest member of each family
to decoy N are indicated by the arrows.

The main results of this analysis can be summarized
as follows: There are only very few distinct low-lying
minima of the FES of our model. One of those is a
good representative of an NMR-like structure, although
it is still a metastable state. Upon closer inspection
all low-lying branches of the FES correspond to three
helix structures (see Tablel). The secondary structure
content of the minimal structure M is closer to the NMR
structure than the NMR decoy.

Overall this picture is consistent with the existence
of one very complex folding funnel in the FES. From the
standpoint of secondary structure analysis this funnel is
characterized as containing only three-helix structures.
Within the folding funnel the configuration explores a
subspace of the full FES in which helix length and posi-
tion vary. Surprisingly there is almost no correlation in
the RMSD between these structures. We note that only
configurations with a deviation of more than 1 A were
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| Decoy Code |

Secondary Structure |

NMR cctHHHHHbbbbbtHHHHttbt HHHHHHHHHHbbcC
N cctHHHHHHHbbtHHHHHHHHHHtHHHHHHHHHHCcc
M ccc HHHHHHHbbbbHHHHHHcct HHHHHHHHHHcCC
A cchtHHHHHHHcbtHHHHHHbccbbbbtHHHHtcce
B cctHHHHHHHHHHtHHHHHHcbbcccbt HHHHHtcc
C ccht HHHHHHHHHtHHHHHbcbbtbect HHHHDbbce

Table 1: Secondary structure analysis (MOLMOL) of the terminal representa-
tives of the branches of the FES depicted in Fig.3

counted as individual decoys. With backbone RMS de-
viations in excess of 7 A, the families of low-lying struc-
tures differ as much among one another as they differ
with a random configuration of the decoy set.

We also note that the energies at which the different
branches of the tree unite are much higher than ther-
mally accessible transition states. Ideally the tree of
configurations should be constructed using estimates of
the transition states between different families[17], [16],
but this is numerically prohibitive for the large number
of decoy configurations considered here. For the low-
est four decoys such searches are presently conducted to
evaluate the accuracy of the tree. The present path con-
necting two families is therefore only an upper bound
on the transition state energy. It is very likely that
members of different families are bridged by partially
unfolded configurations that are lower in energy but do
not appear in the decoy database because they are no
local minima of the FES.

4 Summary and Conclusions

We have motivated the use of stochastic optimization
methods as a technique to predict the structure of com-
plicated biomolecules. To implement this approach, we
have developed a biomolecular forcefield, PFF01, that
parameterizes the free energy of the underlying system
with an implicit representation of the interactions of
the biomolecule with the solvent. We have argued that
there is a rational, decoy-based strategy to develop a
biomolecular forcefield that can be used to predict the
structure of short peptide fragments using stochastic op-
timization techniques such as the stochastic tunneling
method. We have illustrated this approach in the folding
of short peptide fragments and presented an analysis of
the difficulties encountered in the folding of the 36 head
residues of 1VII. We have demonstrated that stochastic
optimization methods permit an analysis of this peptide
at the all-atom level and open a systematic route for the
improvement of the forcefield. We note that the search
for an optimal forcefield for HP36,/1VII, which stabilizes
the native configuration as the absolute minimum of the
FES, was not exhaustive and is presently still under way.
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