Modelling Annular Micromixers

James P. Gleeson!, Olivia M. Roche!, Jonathan West?, and Anne Gelb®

!Applied Mathematics, University College Cork, Ireland. Email: j.gleeson@ucc.ie
National Microelectronics Research Centre, Lee Maltings, Cork, Ireland.
3Department of Mathematics, Arizona State University, Tempe AZ 85287, U.S.A.

Abstract

Magnetohydrodynamic mixing of two fluids in an an-
nular microchannel is modelled as a two-dimensional,
laminar, convection-diffusion problem, and examined us-
ing asymptotic analysis and numerical simulation. The
time T required for mixing of a plug of solute depends
on the Peclét number Pe, and on the geometry of the
annulus. Three scaling regimes are identified: purely
diffusive, Taylor-dispersive, and convection-dominated;
each with a characteristic power-law dependence of T’
upon Pe. Consequences of these results for optimal mi-
cromixer design are discussed.
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1 Introduction

Recent advances in microfluidic and lab-on-a-chip
technology have led to increased interest in laminar mix-
ing of fluids [1], [2]. Efficient mixing is vital for chemical
reactions, but turbulence is absent at the low Reynolds
numbers common in microscale devices, and molecular
diffusion mixes on an unacceptably slow time-scale. In
this paper we discuss the mathematical modelling of
an annular magnetohydrodynamic (MHD) micromixer,
prototypes of which are under development at the Irish
National Microelectronics Research Centre [3]. The de-
vice consists of an annular channel (see Figure 1), with
inner and outer walls acting as electrodes, and an elec-
tromagnet underneath, which provides a vertical mag-
netic field. A radial electric field is imposed by applying
a potential difference across the inner and outer elec-
trodes, and the resulting current density j combines with
the magnetic field B to give an azimuthal Lorentz force
j x B on the fluid [4].

The mixing action of this device in the absence of
molecular diffusion was considered in [1]. In realistic
applications, the actions of convection and diffusion are
felt simultaneously, and the goal of this paper is to ex-
amine their effect upon the efficiency of the mixer. The
discussion here is limited to two dimensions, where the
idealized limit of infinite depth has been taken. Previ-
ous studies of MHD pumping in an annulus have been
motivated by liquid-metal flows and their stability [4],

Figure 1: Annular geometry, showing the centre-line ra-
dius R, and the channel half-width p.

(5], but to our knowledge, this is the first investigation
of the mixing effects in an annular geometry.

2 Notation and equations

The geometry of the annulus is shown in Figure 1.
The radius of the center-line is R, and p represents the
half-width of the channel, so the inner wall is located at
r = R—p, and the outer wall at r = R+ p. We describe
the geometry using the nondimensional parameter

P
which may take values between zero and one. Note that
the limit v — 0 corresponds to a locally straight channel,
and « approaches 1 as the annulus becomes a punctured
disk.

The fluid velocity in the micromixer is found by solv-
ing the steady Navier-Stokes equations in the presence
of the MHD body force [5]. In the two-dimensional case
considered here, only the azimuthal velocity v(r) is non-
zero, and may be found explicitly by solving an ordinary
differential equation [1]. In this paper we character-
ize the velocity by an average angular velocity w. The
mixing of a plug of solute into a surrounding solvent is
governed by the convection-diffusion equation (assum-
ing both fluid phases have similar density, viscosity, etc.)
for the solute concentration ¢(r, ¢, t):

dc wv(r)dc kO [ Oc K 8%
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with no-flux boundary conditions at the walls. Here &
is the molecular diffusivity. In the following sections we
examine solutions of (2) using analytical, asymptotic,
and numerical methods.

The dimensionless parameter used to compare the
importance of convection and diffusion in (2) is the Peclét
number, which we define for our system as

pe= %P, 3)
Note that wR is the characteristic linear velocity, while
p is the smallest linear dimension in the system. Two
natural groupings of parameters to give a dimensional
time will be used in the sequel: the diffusion time R?/,
which measures the time for azimuthal mixing by dif-
fusion in the absence of convection; and the convection
time w™?!, which is representative of the timescale of
rotation of the fluid. The choice of appropriate time-
scaling depends on whether diffusion or convection is
dominant—we initially choose w™!, but will consider the
alternative in the final section.

A completely mixed solute-solvent system has the
initial concentration of solute spread evenly over the
whole annulus. We define mixing efficiency using the
timescale over which the concentration profile evolves
to the uniform state. In order to measure the deviation
from uniformity, we define an average over the annulus,
so that the average concentration (for instance) is

1 R+p

27
{c) = /0 e(r, ¢, t)yrdedr. 4)

4tRp Jr_,

In fact, it is straightforward to show from the convection-
diffusion equation that {(c) is a constant; the total amount
of solute is not changed over time, it is simply redis-
tributed evenly over the annulus. In the following sec-
tions we adopt a simple initial concentration

e(r,¢,0) =1+ cos ¢, (5)

for ease of asymptotic analysis. Numerical results [6] in-
dicate that the asymptotic results remain valid for other
initial conditions.

A mizing measure m(t) is a positive function of time
characterizing the deviation of the concentration at time
t from its uniformly mixed state ¢ = {c¢). Define m(t)
by

{(clr, 8,8) = (&))?)
{(c(r,6,0) = ()))

so that m(0) = 1, and m(t) — 0 as t — oo. The time
Tyr for m(t) to decay from 1 to a specified value M is
called the mizing time, and is defined by the condition

m(Tar) = M. (7)

From the point of view of experimentalists and design
engineers, it is desirable to have simple formulas relat-
ing the mixing time Ths to the Peclét number Pe and
the geometry ratio v of the micromixer. We proceed to
obtain asymptotic approximations to the solution of (2),
and hence scaling laws for the mixing times Tys.

3 Low Peclét numbers

When the Peclét number (3) is sufficiently small, dif-
fusive effects completely dominate convective motion.
The mixing time by diffusion alone may be calculated
by solving the equation resulting from neglecting the
convective term in (2). It is straightforward to find an
infinite series solution by separating variables. Conse-
quently, the mixing measure (6) in this case is

o gt (B (/)
() ; (A () (8)

where F] denotes the first radial eigenfunction, and may
be written in terms of Bessel functions. The form of
m(t) at large times t is dominated by the first term
(j = 1) in this sum. Indeed, in the limit v — 0, we have

m(t) ~ exp(—2KkA11t) ast — oo, (9)

with the eigenvalue given by

1

All:ﬁ

[1 + %72 + 0(74)] for v < 1. (10)

The asymptotic mixing time Ts as defined in (7) then
follows from (9) and (10):

1

1

and so the nondimensional mixing time is

P 1
WTMzﬁln<i> { ——72+...] fory <« 1.

M 3
(12)

4 Intermediate Peclét numbers

Taylor [7], [8] calculated the dispersion in a straight
capillary due to convection, and his methods are readily
adapted to find the Taylor dispersion in an annulus, see
Nunge et al. [9]. An examination of the Peclét numbers
for which Taylor’s approximations are valid [6] leads us
to conclude that for Pe in the range

7.2 € Pe < 15/, (13)
the mixing measure has an exponential tail

m(t) ~ exp(—2Dt) ast— oo, (14)
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with Taylor dispersion coefficient D. The nondimen-
sional mixing time can be shown to have the asymptotic
form

1 1 105

B85 2 | fory <
1576 | T | N7

(15)

5 Convection-dominated mixing

When the molecular diffusion term is small in com-
parison to the convective term, i.e., the limit of large
Peclét number, a singularly-perturbed problem results.
Regular perturbation methods fail to give approxima-
tions which are uniformly valid in time for such prob-
lems, and so we introduce multiple time scales. After
some analysis [6], the mixing measure is calculated to
leading order as

VT (633
=-—F 1
m(t) = 5F (5 ) (16)
where F is defined as the monotonic function
F(z) = 2~ %erf(z'/?). (17)

The nondimensional mixing time corresponding to a mix-
ing measure value of M is therefore

/3
~ [1Pep-1 (21)]
ome~ 100 ()]

and note in particular that this increases as Pe'/3 when
M and « are fixed.

(18)

6 Numerical simulations

To check the asymptotic results derived in previous
sections, and to extend to cases with initial conditions
other than the simple form (5), we solve the convection-
diffusion equation (2) numerically. Logarithmic plots
of m(t) as a function of time at various Pe values are
shown in Figure 3 for v+ = 0.05. For comparison we
plot also the asymptotic forms of m(t), using (9) in the
diffusive regime, (14) in the Taylor regime, and (16) in
the convective regime. The asymptotic formulas fit the
numerical results well, even at early times. Note that
the straight-line asymptotes at very large times for the
high-Pe case are not reproduced by the multiple-time
solution—this is apparently due to the neglect of the
boundary conditions in our analysis, and the subsequent
importance of boundary layers at the inner and outer
walls.

From the numerical solution for m(t), it is straight-
forward to calculate the mixing times T)s required for
the measure to decay from its initial value of 1 to the
value M. We choose three values of M for compari-
son with the asymptotic predictions: M = 0.3, 0.1, and

fary
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m(t) NG
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Figure 2: Mixing measure m(t) as a function of nondi-
mensional time, calculated in numerical simulations
with v = 0.05 and various Peclét numbers as shown.
Asymptotic predictions are also shown for: Pe = 0.5
(dashed) using (9); Pe = 64 (dotted) using (14); and
Pe = 16384 (dot-dash) using (16).

0.01, and investigate a wide range of Peclét numbers.
The numerical values of nondimensional times wTs are
plotted in Figure 4 along with the straight lines cor-
responding to the formulas (12), (15), and (18). Note
the excellent agreement with predictions, except for the
lowest value of M, when the multiple scale solution no
longer accurately describes the time evolution of m(t).
We have also shown in [6] that the asymptotic predic-
tions remain valid when « is a sizable fraction of unity,
and for different initial conditions than (5).

The nondimensional time wTs used in Figure 3 may
be replaced by the alternative nondimensionalization,
i.e., the diffusion time kTs/ R2. The timescales are re-
lated by

I‘LTM

T = peel
and so the data of Figure 3 is easily recast in terms of
the diffusion time, see Figure 4. Figure 4 is especially
of interest to experimentalists working with a particu-
lar solute and solvent (so that « is fixed) while vary-
ing the rate of rotation velocity w of the micromixer to
change Pe. The mixing time is seen to decrease from
the diffusion time through the Taylor regime (at a rate

(19)
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Figure 3: Nondimensional mixing times wTs as a func-
tion of Peclét number, for v = 0.05. Asymptotic results
are shown as lines, and numerical results as symbols for
values of the mixing measure: M = 0.3 (dashed line;
squares), M = 0.1 (solid line, points), and M = 0.01
(dot-dash line, triangles)
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Figure 4: Mixing times nondimensionalized by the dif-
fusion time, xT'/R?, as a function of Peclét number, for
~ = 0.05. See Figure 3 for legend.

proportional to Pe~2), and then continue to decrease
at a slower rate beyond the Taylor regime. The slower
rate corresponds to a Pe~2/3 scaling when (16) is valid,
i.e., for M > 0.1, but is closer to Pe~1/2 for very small
values of M. This is again a consequence of the fail-
ure of the multiple-scale method to account for the very
long time scales where boundary layer effects become
non-negligible.

From our analysis of the limits of validity of the Tay-
lor dispersion description we can estimate the end of
the Taylor regime as 15y~ ! for small 7. Of interest to
the micromixer designer is the influence of the geome-
try ratio 4: as the mixing time decreases as Pe~? until
Pe =~ 15771, it is desirable to decrease v as much as
possible in order to achieve faster mixing at lower veloc-
ities (i.e., lower power inputs in electric and magnetic
fields). Of course smaller v may imply lower volumes of
fluid in the mixer, and due consideration must be given
to the loading and unloading times of the fluids.
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