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ABSTRACT

A two-level hierarchical simulation strategy for gas
damped microdevices including perforated structures is
presented. The first level of hierarchy consists of finding
the flow resistance of a single hole using 3D numerical
simulation. The second level of hierarchy is the coupled
reduced dimensional simulation of the device including
mechanical, electrostatic and fluidic phenomena. The
method can be used to model time-dependent problems
" including large displacements. The scheme is applied
to the simulation of a membrane with hexagonal per-
foration in the cases of transient pull-in and damped
large-amplitude oscillation.

Keywords: perforated, hierarchical model, finite ele-
ment method

1 INTRODUCTION

The squeezed-film-damping of micro-electro-mecha-
nical devices may be reduced significantly by creating a
number of small holes into the structure. Unfortunately,
in numerical simulations, it is possible to consider only a
few holes in detail, since a larger system makes the com-
putational cost too high. A more feasible approach is to
homogenize the contribution of the holes over the whole
domain. This approach may be used to account for the
effects caused by perforation in microfluidistics [1]-[3],
in electrostatics as well as in elasticity [4].

In this paper we follow a hierarchical two-level sim-
ulation strategy. We take a unit cell including one hole
and compute the flow resistance as a function of the
air gap height. From this calculation, the homogenized
flow resistance is extracted, and used in the coupled re-
duced dimensional analysis including fluidic, elastic and
electrostatic forces.

2 THEORY

2.1 Level 1: Homogenization of Holes

The flow resistance of a single hole can be determined
by simulating numerically the gas flow through the hole.
The geometry for the simulation should include a unit
cell of the structure consisting of the perforated body, air
gap and a region of space above the hole. The geometry

should extend on the intermediate area between adja-
cent holes up to the symmetry plane. The void region
above the hole should be large enough to avoid any arti-
ficial effects due to the boundaries of the computational
domain. It suffices to use a velocity boundary condition
for the gas instead of simulating the movement of the
elastic structure.

From the flow field the force F' acting on the elastic
plate may be computed. There is a monotonic depen-
dence between the force and the velocity of the moving
structure, v. The dependence is linear, if the equation
describing the fluid flow is linear. Further, if the com-
pressibility of the gas may be neglected, no phase shift
between wake velocity and response force can appear,
and the ratio between these quantities is a single real
value.

The ratio F'//v describes the flow resitance in the unit
cell for each height of the air gap. The flow resistance
may be averaged with respect to the area of the unit
cell, Ay, resulting in the specific acoustic impedance [5],

F
= 1
The simulations should be performed on a number
of different air gaps. The horizontal flow into the hole
is affected by the height of the air gap, d, whereas the
flow resistance through the hole remains approximately
unchanged. The results may be used to define a spe-
cific acoustic impedance that is a function of the air gap
height, zp = zx(d).
For the linearity of the Navier-Stokes equations, we
can argue that the mass term of the equations is small
since the Reynolds number of the problem is small

Re="YL 1078, (2)
n
where p and 7 are, respectively, the density and the
viscosity of the gas and U and L are, respectively, the
velocity and length scales of the problem.

The low value of the Reynolds number implies that
the convection term of the Navier-Stokes equations can
be neglected. Also, when the compressibility of the gas
is negligible, the flow is not time-dependent if the bound-
ary conditions do not depend on time. Thus, the fluid
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flow is governed by the stationary Stokes equation
—V - (2n%) + Vp = pf, (3)

where p is the pressure, p f is a body force and Z is the
linearized strain tensor. For incompressible gases, the
condition V - 4 for the gas velocity @ is also required.

The gas flow can be assumed incompressible since
the gas velocity stays well below the speed of sound
in operating conditions, which implies very low Mach
number, and thus incompressible flow [6]. Certainly,
the nature of the gas in this respect depends on the fre-
quency of the membrane’s oscillations. The conclusions
made above are valid for microsystems typically when
the oscillations are below radio frequencies.

Also the temperature changes and viscous pressure
variations can be studied by non-dimensional analysis to
determine if they have an effect on the gas density [7].
All in all, the compressibility issue is difficult to answer
without numerical tests which should preferably be per-
formed.

Also, in order to the Stokes (or Navier-Stokes) equa-
tion to be valid, the flow has to be on the continuum
regime which means that the dimensions of the geome-
try may not be arbitrarily small. The importance of the
gas rarefaction effect can be stated with the Knudsen
number

L

Kn=1, @
where £ is the mean free path of gas molecules. In
normal conditions, the mean free path for air is a little
below 100 nm so that geometries with air gaps down
to 1 pum are suitable for continuum approach when slip
boundary conditions are used [7]. The mean free path,
however, is inversely propotional to the ambient pres-
sure, and thus the applicability of the continuum ap-
proach is further limited in conditions where the ambi-
ent pressure is low.

2.2 Level 2: Coupled Simulation

The second hierarchy level consists of solving a cou-
pled system of equations describing the fluidic, electro-
static and elastic phenomena. In this paper the thick-
ness of the structure and the air gap are assumed to be
small compared to the other dimensions. This makes it
possible to describe the behavior of the structure with
reduced dimensional equations. Therefore the structure
is modeled with a 2D plate equation, the electrostat-
ics with 1D potential equation and the fluid with a 2D
Reynolds equation.

The transient Reynolds equation for large displace-

ments is R (od)
pd _ O(pd
v (E;;VP) = ot ©)

where p is the absolute pressure and d is the air gap
height.

For perforated plates the Reynolds equation must
be modified so that the additional term due to the holes
is accounted for. The pressure drop over the hole is
obviously Ap = p— P, where P is the reference pressure.
Assuming small pressure deviations the equation can be
written [3]

3
v (%iﬁvp> - iz-"'( p=2r d)a (6)

where zp is the spec1ﬁc acoustic impedance obtained
from 3D simulations.

When the size of the holes diminishes the acoustic
impedance approaches infinity and therefore the original
Reynolds equation is restored. On the other hand, when
the acoustic impedance is small the equation simplifies

to 5d
P-p=z. (7)
Comparing this to Eq. 1 and noting that the pressure
difference is just the net force per area we may conclude
the equation returns the correct pressure at the limit.
Thus, the modified Reynolds equation models the ex-
treme cases accurately. The intermediate region where
the relative importance of vertical and horizontal flow
is equally important may be more susceptible to errors.
For electrostatics we use the fact that for nearly per-
pendicular plates the magnitude of the electric field may
be approximated by E = ®/d, where @ is the potential
difference. The electric energy density is

,1,2

— ZeE?d = 2
from which the force densn:y is obtained by derivation,
de ed?
1=%= 2@ ©)

For the elastic membrane we use a Kirchhoff type of
linear plate model,

62

6t2
where K = Et®/[12(1 — v?)] is the bending stiffness, E
is Young’s modulus, v Poisson ratio, and T the surface
tension. A linear model is sufficient if the maximum dis-
placement w is significantly smaller than the thickness
of the plate h. If the plate is pre-stressed the region of
validity further increases.

The full system includes Equations 9, 10 and 6. The
dependence between the height of the air gap d and dis-
placement w is needed to close the system. For aligned
plates the dependence is simple, d = D — w, where D is
the air gap height at rest. The solution for each time-
step is found by a loosely coupled iteration scheme where
the equations are solved consecutively until the conver-
gence criteria are met.

+ KAAw —TAw =p+ f, (10)
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3 RESULTS

Numerical simulations with the two-level strategy
were performed for a resonating square membrane with
an opposing backplate with hexagonal perforation holes.

The size chosen for the membrane was 1 mm x1 mm
x1 pum. The elastic parameters used were E=160 GPa,
v=0.30, p=2300 kg/m3, and T=2 MPa/m. The rigid
backplate was 10 pum thick and filled with hexagonal
holes with a diameter of 8 um and area fraction of 4/9.
The viscosity of the air was 7=20.8e-6 Pas and the air
gap height at rest was 1 pym.

The computations were performed with Elmer finite

element software [8] that includes many tailored models
for simulating micro-electro-mechanical devices.

3.1 Analysis of Hexagonal Holes in 3D

The simulation geometry for resistance extraction is
pictured in Fig 1. The Stokes equation was given a con-
stant velocity boundary condition on the lower wall and
the upper boundary was left open. The open sides were
modeled with symmetry conditions and no-slip condi-
tions were used on other walls. The simulations were
performed with various air gaps and the net force act-
ing on the lower boundary was computed. An accurate
analytical model for the specific acoustic impedance was
obtained by a least-square fit of the function

zh(d) = (do/d)n -+ 2o, (11)

where n is 2.475, dp is 10.75 um and z is 323.6 kg/m?s.
The results with the fitted function are pictured in Fig. 2.

Figure 1: The quadrant of one hexagonal hole (left) with
pressure isobars (right).

Also, the applicability of the linearity and incom-
pressibility assumptions were studied. Following the
procedure in [7] the relative importance of the viscous
pressure changes as well as assumed temperature changes
were studied and their effect on the gas density was

0 0.5 1 1.5
d (um)

Figure 2: Numerical results (circles) and the fitted func-
tion for the specific acoustic impedance as a function of
air gap height.

found to be negligible. The complimentary numerical
tests showed that the incompressible Stokes equation is
sufficient approximately down to gaps of 0.2 um. Thus,
linear dependence between velocity and net force with-
out phase change was assumed.

3.2 Transient Membrane Simulations

As a second step, transient simulations for the res-
onating membrane were performed. Here, the analytical
fit for the specific acoustic impedance z, was used. The
dynamical pull-in phenomenon and the damping of a
pressure pulse initiated oscillation were studied.

The dynamical pull-in phenomenon occurs when the
bias voltage between the membrane and the backplate is
larger than the critical pull-in voltage and the membrane
is initially at rest. Here a voltage difference of ®=2 V
was chosen. The results with two different reference
pressures were compared to the undamped case. The
minimum air gap heights with time for the three cases
are depicted in Fig. 3. For each case the starting phase is
similar as the inertial forces dominate. The undamped
case is in an accelerating motion until the pull-in occurs,
whereas in the damped cases the velocity reaches a value
where the attracting force and the fluidic resistance are
in balance.

The maximum pressure difference over the membrane
in the two damped cases is shown in Fig. 4. The pres-
sure increases dramatically when contact is approach-
ing. Strictly speaking, in the present model contact
cannot occur since the pressure approaches infinity as
the membrane approaches the backplate. The time of
contact could be modeled if slip conditions for the flow
were used.

The gas damping effect is clearly demonstrated in
the pressure pulse initiated oscillation of the membrane.
The wake for the membrane was a pressure pulse of
10 Pa applied for 10 ps duration. Simulations were car-
ried out for an undamped system and damped systems
in the ambient pressures of 1 and 0.1 atmospheres. As
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Figure 3: The minimum air gap height as function of
time for undamped (dash-dot line) and damped cases
with P=1.0 atm and P=0.5 atm (dashed line).
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Figure 4: The maximum pressure difference with time
for damped cases with P = 1.0 atm and P=0.5 atm
(dashed line).

seen in Fig. 5, the movement of the membrane in the
latter cases is gradually damped.
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Figure 5: The air gap height at center as function of
time for undamped (dash-dot line) and damped cases
with P=1.0 atm and P=0.1 atm (dashed line).

4 CONCLUSIONS

We have presented a hierarchical simulation method
for an elastic membrane under electrostatic and fluidic

forces, in which the effect of arbitrary shaped perfora-
tion holes can be taken into account. The method can
be used in time-dependent simulations and is not limited
to small displacements. The approach may be applied
to a variety of micro-electro-mechanical systems, such
as planar accelerometers, microphones, pressure sensors
and resonators.

The simple homogenization of the holes is possible
only if the underlying phenomena are linear in nature.
Therefore the use of Stokes equation in the flow sim-
ulations is not only a more economical alternative to
the Navier-Stokes equation but also a prerequisite for a
successful homogenization.

The validity of the 3D flow simulations is essential
to the accuracy of the results. The no-slip boundary
condition is not realistic in small dimensions. For better
accuracy slip conditions should be adopted.

Basically, the hierarchical strategy is not dependent
on the particular method used to determine the flow re-
sistance. In principle, the method could be used also
with Monte Carlo simulations of rarefied gases, for ex-
ample. As long as the specific acoustic impedance is
found out, the second level of hierarchy can be applied.

The perforation effects have been accounted only for
the gas flow where the holes dominate the behavior. The
perforation also affects the electrostatic forces and some-
times also the elasticity. Here the effect is on the same
order of magnitude as the fraction of the perforation
holes.

In this paper we have only dealt with planar struc-
tures where the reduced dimensional equations may be
used. The hierarchical approach is not, however, limited
to the reduced equations. We have, for example, used
homogenization of flow resistance together with 3D elas-
ticity equations.
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