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ABSTRACT

This paper presents analytical expressions for the
normalized mean velocity of a liquid flowing in a rectan-
gular microchannel. For fully developed laminar flow at
low Reynolds numbers, the governing Navier Stokes
equations reduce to a balance between the axial pres-
sure gradient and the viscous shear stresses in the cross-
sectional plane. The resulting Poisson equation is solved
numerically on a nonuniform grid using the finite vol-
ume method to obtain axial velocity distributions that
are averaged over the channel cross section to extract
the normalized mean velocities. These numerical re-
sults are used to guide the development of analytical
solutions that apply in asymptotic limits of fluid depth
and contact angle. These asymptotic solutions are then
blended analytically to obtain a relatively simple and ac-
curate comprehensive expression for the mean velocity
as a function of contact angle and aspect ratio.

1 INTRODUCTION

Liquid flow in microchannels is important to a num-
ber of technologies including cooling of microelectronics
by heat pipes and capillary pumped loops as well as
capillary wetting of channels in molding processes and
in chip-based devices for identification of chemical and
biological species. Since channel lengths in these appli-
cations greatly exceed lateral channel dimensions, such
flows can be accurately and efficiently modeled using one
dimensional analyses in which the frictional flow resis-
tance is described in terms of a friction coefficient that
depends on the channel geometry, the fraction of the
channel depth that is filled with liquid, and the wetting
angle at the contact between the meniscus and the solid
channel walls.

Although a number of previous numerical studies
have provided friction coefficients for some subsets of
the important parameter range, they generally do not
span a wide range of channel aspect ratios and wetting
angles and rarely do they provide accurate and com-
prehensive analytical approximations needed for appli-
cation by others. Schneider and DeVos [1] analyzed the

heat transport capability of axially grooved heat pipes.
They presented an approximate model that includes the
influence of liquid/vapor interaction and compared their
results with the exact solution of DiCola [2]. However,
these results are limited to cases in which the fluid depth
is large compared to the radius of the meniscus. Suh et
al. [3] investigated the flow of liquid and vapor in trape-
zoidal and sinusoidal grooves, taking into account the
effects of variable shear stress at the interface. They
modified the Schneider/DeVos [1] relation for the fric-
tion in rectangular grooves to obtain approximations for
trapezoidal and sinusoidal grooves, but these are accu-
rate only within limited parameter ranges. Thomas et
al. [4] presented a semi-analytical solution and a two-
point numerical solution for the mean velocity in trape-
zoidal grooves with shear stress at the liquid-vapor inter-
face. Although comprehensive, the suggested analytical
approximations sometimes yield error as large as 30%.

Here we use numerical solutions of the Navier Stokes
equations to guide the construction of analytical approx-
imations by blending three asymptotic solutions that
apply in different ranges of the ratio of channel width to
fluid depth. The approximations are easily applied and
are accurate within a few percent over the full range of
parameters. )

2 GOVERNING EQUATIONS

Capillary flow of an incompressible Newtonian lig-
uid is considered for the rectangular groove shown in
Figure 1. These straight sided channels are particularly
important in heat transfer applications because high-
aspect-ratio channels having parallel walls can readily
be fabricated from high-conductivity metals using litho-
graphic and electrodeposition processes. As appropriate
for sub-millimeter channel widths, the free surface be-
tween the liquid and the vapor is assumed to have a
constant curvature and hence, a shape given by
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For fully developed laminar flow at low Reynolds
numbers, the governing Navier Stokes equations reduce
to a balance between the axial pressure gradient and the
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Figure 1: Rectangular groove geometry and coordinate
system.

viscous shear stresses in the cross-sectional plane. Thus,
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where u is the velocity component in the axial direction,
1 is the viscosity of the fluid, and p is the pressure.
On the groove walls, the no-slip condition is imposed,

u=0, 3)

while the boundary condition on the liquid/vapor inter-
face is
p(@-Vu) =1, 4)

where 7 is the unit outward normal to the interface and
T is the shear stress.

The momentum equation can be put in dimensionless
form by introducing the following dimensionless vari-
ables
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Using Eqgs. (5) the dimensionless form of Egs. (2) and
(4) are given by
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and
n-vut =71, (7

where A = W/h is the aspect ratio.

Because Egs. (6) and (7) are linear, the solution can
be decomposed into a pressure-driven flow solution, uy,
that satisfies Eq. (6) with zero shear at the interface and
a shear-driven flow solution, u}, that satisfies Laplace’s
equation subject to a dimensionless shear boundary con-
dition at the interface. Thus, assuming a uniform shear
stress along the liquid/vapor interface, the combined so-
lution can be expressed as,

ut = up +upT”, (8)
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Figure 2: Axial velocity contours for pressure-driven
flow: (a) a=0° h=0; (b) a=45,h=1

where u} is driven by a unity shear stress at the lig-
uid/vapor interface.

The governing equations were solved numerically to
obtain axial velocity distributions like those shown in
Figure 2 for different aspect ratios and contact angles.
This was accomplished by discretizing the governing equa-
tions on nonuniform grids using the finite volume method.
These profiles are then averaged over the channel cross
section to obtain the normalized mean velocities,

U*=%/Au* (z*,y*) dA. 9)

3 RESULTS FOR
PRESSURE-DRIVEN FLOW

Figure 3a shows the mean velocity as a function of
aspect ratio for several choices of the contact angle. As
)\ approaches zero, all the curves collapse onto a sin-
gle well-known asymptote, U* = 1/12. In the opposite
extreme of large A, all of the curves follow the intermedi-
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ate asymptote, U* =1/ 32, until turning onto separate
horizontal asymptotes, U5 (a), describing corner flows
like that shown in Figure 2a. We note from Figure 1,
that these corner flows are obtained when h = 0 and
hence A = 0o. For convenience, an alternate aspect ratio
is defined as

w 2cos
A=w

" 1-sina’ (h=0). (10)
As seen in Figure 3b, if the mean velocities of these
limiting corner flows are expressed in terms of A in-
stead of o, then they may also be viewed as a transi-
tion between asymptotes Ug = 0.0027 and Ug = 1/7A*
that apply in the limits of small (@« — 0°) and large
(a0 — 90°) A, respectively. All these asymptotic solu-
tions are blended analytically to obtain a relatively sim-
ple and accurate comprehensive expression for the mean
velocity as a function of contact angle and aspect ratio.
The blend is obtained using the following expression:

1/m
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For the corner flow solutions, the asymptotes U} and
Uy are defined by
1

Up = Uk =0.0027, U = :
LTreo 2T T (A=2° +b(A—2)
(12

which lead to
m 1/m
U = (UE,O)
c= ™ 2 A
1+ (Ug,o) [7(A — 92 4+b(A-2) ]
(13)

where Ug is the mean velocity when A = 2 (a = 0).
Eq. (13) is accurate to within 2% relative error with
the parameters m, b, and k set to 1.88, 150, and 0.87,
respectively.

To obtain a comprehensive expression of the mean
velocity for all contact angles and aspect ratios, the as-
ymptotes Uy and Uy are chosen as

1 o
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When Egs. (14) are substituted into Eq. (11) with the
parameters m = 1.31, n = 0.82, and a = 8.37, the mean
velocity can be approximated with a maximum relative
error of 10% for o in the range 0° < a < 60°. Different
sets of (m,n, a) can be used to obtain different levels of
accuracy over various ranges of the contact angle. For
the most familiar case of a relatively wide channel having
flat interface over most of the channel width, or equiva-
lently for narrow channels with a = 90°, the parameters
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Figure 3: Normalized mean velocity as a function of
aspect ratio for the pressure-driven flow: (a) solutions
at different contact angles, (b) corner flow solutions.

m =1, n = l,and a = 2.6 yield an accuracy of 2.5%.
In heat pipe and other capillary pumping applications
where small contact angles are of great importance, the
parameters m = 1.4, n = 0.83, and a = 9.71 yield a
maximum relative error of only 6% for contact angles in
the range 0° < o < 30°.

4 RESULTS FOR SHEAR-DRIVEN
FLOW

Figure 4a shows the mean velocity as a function of as-
pect ratio for several choices of the contact angle for the
shear-driven flow. As in the pressure-driven flow, sev-
eral asymptotes are can be identified and similar blends
can be constructed for the mean velocities. The corner
flow solutions shown in Figure 4b are obtained by sub-
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Figure 4. Normalized mean velocity as a function of
aspect ratio for the shear-driven flow: (a) solutions at
different contact angles, (b) corner flow solutions.

stituting the asymptotes

3

ey

Up = Ugo = 0.0313,U; =

into Eq. (11). Thus,

Uz0)" ”
UL = >0 . (16)
° { 1+ (Ugo) " (A -2)]" }

When the parameter m = 1.11, Eq (16) approximates
the mean velocities of the shear-driven corner flow to
within 4% relative error.

Similar to Egs. (14), two asymptotes are developed
to obtain a comprehensive expression of the mean ve-
locity for all contact angles and aspect ratios:

1/n
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The coefficient ¢ is a function of @ and given by
c(o) = —1.550% + 0.84c + 14.57, 0 < a < /2. (18)

When Egs. (17) are substituted into Eq. (11) with
the parameters m =1, n = 1.75,d =1, and k = 0.6 the
mean velocity can be approximated with a maximum
relative error of 15% for o in the range 0° < a < 90°.
For contact angles in the range 85° < o < 90° the pa-
rameters m = 2.6, n = 14, d = 5.9, and k¥ = -0.3
yield an accuracy of 5%. For contact angles in the range
0° < a < 30° the parameters m = 1.1, n = 1.38, d = 2,
and k = 0.9 yield a maximum relative error of only 5%.

5 CONCLUSIONS

In this work the mean velocity of a liquid flowing in
rectangular microchannels has been investigated. Both
pressure-driven and shear-driven flows have been con-
sidered. Accurate analytical expressions for the mean
velocities as functions of contact angle and aspect ra-
tio were developed. This was accomplished by blending
asymptotic solutions that apply in the limits of small
and large aspect ratio for all contact angles. The results
show that the mean velocities in both cases are strongly
dependent on the contact angle and aspect ratio of the
channel.
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