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ABSTRACT

In this study, we perform an optimal shape design of
a pressure-driven curved micro channel with minimum
pressure drop using a mathematical theory. We con-
sider two different wall types such as hydrophobic and
hydrophilic walls where the slip and no-slip conditions
are applied, respectively. Optimal shapes are obtained
from the initial circular shapes, which are commonly
used in most curved channels, at three different bulk
Reynolds numbers of 0.1, 1 and 10 for both the 90° and
180° curved channels. In the optimal shape, the height
of the curved channel is widened according to the opti-
mality condition, and the pressure drop is significantly
reduced by about 10% ~ 20% as compared to that with
the initial circular shape.

Keywords: curved micro channel, pressure drop, op-
timal shape design, hydrophilic wall, hydrophobic wall.

1 INTRODUCTION

Flow in a microchannel is driven by the difference be-
tween the pressures at the inlet and exit or between the
electric potentials. For the first case (pressure-driven
flow), an important issue is how to reduce the pressure
drop required to drive a constant mass flow rate in a
channel. In microfluidic applications such as LOC, 90°
and 180° curved channels are frequently used to supply
long flow passage in a compact volume. In most curved
channels, the part connecting two straight channels is
made of circular walls. However, modification of the
shape in the connection part may significantly reduce
the pressure loss.

For the pressure-driven liquid flow in a micro chan-
nel, the no-slip boundary condition is not always valid.
That is, fluids do not slip at the hydrophilic micro chan-
nel wall but do slip at the hydrophobic wall [1, 2]. The
slip velocity for the hydrophobic wall can be described
by the well-known Navier’s hypothesis, u|, = a-0u/0n|y,
where ul,, is the slip velocity at the wall, Ou/dn/|, is
the wall-normal velocity gradient at the wall, and « is
the slip length. The fluid slip at the hydrophobic wall
results in the reduction of the skin friction (or the re-
duction of the pressure drop) as compared to the case
of the hydrophilic wall [3].

Therefore, we design the optimal shapes of pressure-
driven curved micro channels with the hydrophobic and
hydrophilic walls, respectively, in this study. The opti-
mal shapes are obtained using an optimal control theory
based on the variational calculus and the gradient algo-
rithm [4, 5] at three different bulk Reynolds numbers of
0.1, 1 and 10 for both the 90° and 180° curved channels.

2 SHAPE DESIGN ALGORITHM

Figure 1 shows the schematic diagram of a two di-
mensional 90° circular-shaped curved micro channel. In-
ner and outer radii of the circular channel are Ry and
Ro, and the streamwise lengths of the inlet and outlet
channels are Ly and Ls, respectively. I'js represents the
wall boundary of the circular channel to be designed, I'y
and I'p are the channel entrance and exit boundaries,
and I'r represents the fixed wall boundaries of the two
straight inlet and outlet channels. I'ps, 'y, T'o and I'p
constitute I' and the inner domain enclosed by I is Q. P
in figure 1 is determined by moving each point P on I'ps
in outward normal direction by the magnitude of e((s),
where ((s) is an arbitrary function of the arc length s.
Tp,e is a new curved channel wall that consists of P/s.
Here € is a very small positive number.

The flow inside the curved channel is assumed to be
steady, incompressible laminar and satisfies the continu-
ity and Navier-Stokes equations:

i = W
pujUi; = —Pit MU,

where u; are the velocities, p the density, p the pressure
and p the viscosity. Flow at the entrance of the micro
channel is a fully developed laminar channel flow and
flow at the exit is assumed to be fully developed with
a sufficiently long outlet channel. The no-slip and slip
boundary conditions are applied to the hydrophilic and
hydrophobic walls, respectively:

u; =0 at hydrophilic wall,

Us

on

where u,, and u, are the wall-normal and tangential ve-
locities at wall, respectively. The Reynolds number is

up =0& us = at hydrophobic wall,
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Figure 1: Schematic diagram of a curved micro channel.

defined as Re = upmh/v = um(Ro — Ry)/v, where up, is
the bulk mean velocity at the channel entrance and A is
the channel height.

In this study, we are to obtain the optimal shape of
T'ps to minimize the driving force or the pressure differ-
ence between the channel exit and entrance. Therefore,
the cost function maximized is defined as

J(T ) =/ pumids-l-/ pu;n;ds, 3)
Ty To

where n; is the outward normal unit vector.

Let 8J be the variation of the cost function due to
the shape change of the curved channel wall from I'y
to T'are, and it can be determined using the variational
calculus as (the detailed procedure is not shown in this

paper)

' Ous 8%us\ Oz
5J—,U/FMC(5) <3—n—a'%‘2—> e @

where u; and 25 are the velocity and adjoint velocity,
respectively, in the tangential direction. Equation (4)
represents the variation of the cost function for both
cases of the hydrophilic (o« = 0) and hydrophobic (o #
0) walls. Here, z; and ¢ are the adjoint velocity and
pressure that satisfy the following adjoint equations:

2 =0 5)
i gj + pug(zij + 25,4) = ¢ = 0.
The wall boundary conditions for the adjoint velocity
are similar to those of the velocity:
z;=0 at hydrophilic wall,

Oz,

on

z2n=0& 2z, = at hydrophobic wall.
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Figure 2: Variations of (a) the cost function and (b)
shape at successive iterations (Re=1): ------- , itera-
tion=0; —-—-— , 18, ————, 305 —-=--—, 45; , 60.

Here, when we define ((s) as

du us\ 0zs
) =u) (G -a G ) O

4J is always positive, where w(s) is a nonnegative weight-
ing function. Therefore, a new shape obtained by mov-
ing the wall boundary by e((s) guarantees the increase
of the cost function J. From (7), it is clear that the
optimality condition for minimum pressure drop is zero
skin friction at the curved hydrophilic wall, whereas at
the curved hydrophobic wall it becomes dus/On — « -
d%us/0n? = 0.

From the initial circular-shaped curved channel, we
iterate the shape until the cost function converges to its
maximum. For the shape design of a 180° curved micro
channel, the optimality condition and design procedure
are the same as those for 90° curved one.

Steady, incompressible Navier-Stokes and adjoint equa-
tions are solved using the SIMPLER algorithm [6]. The
convective terms in the Navier-Stokes equations are dis-
cretized using the third-order QUICK scheme [7].

The lengths of the two straight inlet and outlet chan-
nels are L1 = 3 and Ly = 6, and the inner and outer
radii of the initial circular-shaped curved channel are
R; = 0.5 and Rp = 1, and the height of the straight
channel is h = Rp — R; = 0.5. With each change of
the shape, the grids are generated automatically using
an elliptic/hyperbolic hybrid grid generation program.
The numbers of grid points are 256 x 64 and 288 x 64 for
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Figure 3: Optimal shapes of 90° and 180° curved chan-
nels: (a), (¢) hydrophilic wall; (b), (d) hydrophobic wall.
------- , Initial shape; , Re=0.1; ------—, Re=1,
————, Re=10.

the 90° and 180° curved channels, respectively. The op-
timal shapes of the curved micro channels are obtained
for both the hydrophilic and hydrophobic walls at three
different bulk Reynolds numbers of 0.1, 1 and 10. The
velocity boundary conditions at the hydrophobic wall
are given in (2) with o = 0.05.

3 RESULTS

Figure 2 shows the variations of the cost function
and shape at successive iterations for the 180° curved
micro channel with the hydrophobic wall at Re = 1.
As the iteration number increases, the cost function in-
creases and converges to its maximum. The height of the
curved channel is widened and the shape of the channel
is significantly modified. When the iteration number is
larger than 40, the cost function increases very little but
the shape keeps changing. At the iteration numbers of
15, 30, 45 and 60, the corresponding reductions in the
pressure drop are 10.6 %, 14.2 %, 15.4 % and 15.8 %,
respectively, as compared with that of the initial circu-
lar shape. Inspite of the non-negligible difference in the
shapes at the iteration numbers of 45 and 60, the reduc-
tions in the pressure drop are nearly the same, indicat-
ing that no further change in the shape is required. The
same tendencies are observed in all cases of 90° and 180°
curved channels with the hydrophobic and hydrophilic
walls at Re = 0.1, 1 and 10.

Figure 3 shows the optimal shapes of 90° and 180°
curved channels at various Reynolds numbers. The op-
timal shapes shown in this figure are obtained with the
same convergence criteria such that the increase in the
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Figure 4: Distributions of Cr and C, along the inner
and outer walls of the 180° curved channel at Re=1: (a),
(b) hydrophilic wall; (c), (d) hydrophobic wall. —-—-— ,
Along the inner wall of the initial shape; -------, along
the outer wall of the initial shape; ————, along the
inner wall of the optimal shape; , along the outer
wall of the optimal shape.

cost function per iteration is less than 0.1 % of the total
increase in the cost function. Apparently, the heights of
the optimal curved channels with the hydrophobic wall
are smaller than those with the hydrophilic wall, and the
height becomes slighty smaller with increasing Reynolds
number. However, it should be mentioned that Fig. 3
does not precisely show the dependence of the optimal
shape on the Reynolds number and the wall type, be-
cause the pressure drop becomes very insensitive to the
shape change near the optimal shape.

Figure 4 shows the distributions of the skin-friction
coefficient, Cr = (0u/0n — ad*u/0n?)/(um/h), and the
pressure coefficient, C,, = (p—pr)/(pu2,/2), along the in-
ner and outer walls of the 180° curved channel at Re=1,
where s is the arc length along the centerline of the
channel from the entrance of the straight inlet channel.
In figure 4, 0 < s < 3 corresponds to the straight inlet
channel region, 3 < s < 5.36 the curved wall region,
and 5.36 < s < 11.36 the straight outlet channel re-
gion. In the optimal shape, the value of CF is nearly
(although not exactly) zero along the inner and outer
walls, and the pressure is nearly constant in the curved
wall region. With the optimal shape, the pressure drop
is significantly reduced by about 10% ~ 20% as com-
pared to that with the initial shape.

In figure 5, we show the pressure distributions inside
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Figure 5: Pressure distribution inside 180° curved channels at Re=1: (a) initial shape with the hydrophilic wall;
(b) optimal shape with the hydrophilic wall; (c) initial shape with the hydrophobic wall; (d) optimal shape with the

hydrophobic wall.

the initial and optimal shapes of 180° curved channels
at Re=1. From this figure, it is clear that with the
optimal shape fluids can be driven further downstream.
Therefore, one may use a micro pump with a smaller
power by modifying the shape of the curved channel
and thus micro system becomes much smaller.

4 CONCLUSIONS

In the present study, we designed the optimal shapes
of 90° and 180° curved micro channels with minimum
driving force using a mathematical theory at three dif-
ferent bulk Reynolds numbers of 0.1, 1 and 10. Two dif-
ferent wall types of hydrophilic and hydrophobic walls
were considered. The slip boundary condition that may
be described by the Navier’s hypothesis was applied
for the hydrophobic wall, while the no-slip boundary
condition for the hydrophilic wall. The optimal shapes
were obtained iteratively based on the gradient method
from the initial circular shape. We iterated the curved
channel wall shape until the cost function did not in-
crease within a given convergence criteria. In the opti-
mal shape, the height of the curved channel was widened
according to the optimality condition. With the optimal
shape, the pressure drop was significantly reduced by
about 10% ~ 20% as compared to that with the initial
shape.
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ogy.
REFERENCES

[1] P. A. Thompson and S. M. Troian, “A General
Boundary Condition for Liquid Flow at Solid Sur-
faces,” Nature, vol. 389, no. 25, 360-362, 1997.

[2] D. C. Tretheway and C. D. Meinhart,“Apparent
Fluid Slip at Hydrophobic Microchannel Walls,”
Physics of Fluids, vol. 14, no. 3, L9-L12, 2002.

[3] K. Watanabe, Yanuar and H. Udagawa, “Drag Re-
duction of Newtonian Fluid in a Circular Pipe with
a Highly Water-Repellent Wall,” J. Fluid Mech.,
vol. 381, 225-238, 1999.

[4] O. Pironneau, “On Optimum Design in Fluid Me-
chanics,” J. Fluid Mech., vol. 64, 97-110, 1974.

[5] H. Cabuk and V. Modi, “Optimum Plane Diffusers
in Laminar Flow,” J. Fluid Mech., vol. 237, 373-
393, 1992.

[6] S. V. Patankar, “Numerical Heat Transfer and
Fluid Flow,” McGraw-Hill, 1980.

[7] B. P. Leonard, “A Stable and Accurate Convec-
tive Modelling Procedure Based on Quadratic Up-
stream Interpolation,” Computer Methods in Ap-
plied Mechanics and Engineering, vol. 19, 59-98,
1979.

Nanotech 2003, Vol.1, www.nsti.org, ISBN 0-9728422-0-9



