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ABSTRACT

The tip displacement of thermally actuated
bimorph cantilevers is examined analytically to
determine the optimum combination of material
properties and structure dimensions to achieve
maximum deflection. ~Two cases are considered:
constant combined layer thickness (varying the layer
thickness ratio) and constant single layer thickness
(varying the second layer thickness). Analytical results
are verified by comparison with finite element
simulations. Several design optimization examples are
presented to illustrate the usefulness of the analytical
approach over conventional numerical and simulation
methods.
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1. INTRODUCTION

Bimorph structures have long been studied and
used in Micro-Electro-Mechanical Systems (MEMS)
for sensors and actuators because of their sensitivity,
fast response time and ease of integration into
semiconductor technology [1]. They can also provide
important information about the material properties of
device components such as residual stress, elastic
modulus, thermal expansion and piezoresistivity. In
some applications, desirable large deflections are
designed using numerical, simulation or experimental
approaches. Despite their wide use, these methods are
still far from optimum. Recently however, several
studies have addressed analytical optimization of
bimorph cantilevers [2, 3], but a solution has only been
given for structures with constant combined layer
thickness. To our knowledge, an analytical
optimization solution has not yet been published for the
less limited problem of a bimorph cantilever with one
constant and one variable layer thickness.

In this paper, an analytical model is derived which
allows theoretical investigation and quantitative
optimization of bimorph cantilever tip displacement
based on material properties and structure dimensions.
The optimization equations relating bimorph thickness,

width and elasticity parameters, and expressions for the
resulting maximum tip deflection are then obtained for
the two cases. We find that for bimorph cantilevers
with a constant total thickness, the maximum deflection
is independent of the relative width, thickness and
Young’s modulus of the two layers, and the
optimization equation is a quadratic expression. For
bimorph cantilevers with one constant and one variable
layer thickness, the maximum deflection is found to be
inversely proportional to the thickness of the variable
layer, and the optimization equation is a cubic
expression.

2. BIMORPH CANTILEVERS

A bimorph cantilever of length L is sketched in
Figure 1. In general, the two layers can have different
width, thickness, Young’s modulus and thermal
expansion coefficient (TEC). Temperature changes
induce cantilever deflection due to a bending moment
generated by the TEC difference for the two materials.
The radius of curvature » of a bent cantilever can be
derived by minimizing the total energy [2] or balancing
forces [4], which gives:
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Figure 1: A typical bimorph cantilever.
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where b,, by, 1), t5, E;, and E, are the width, thickness
and Young’s modulus of each material, respectively,
Aa is the TEC difference for the two materials and AT
is the temperature change from the value at which the
cantilever is not deflected.

The tip deflection, in terms of the radius of
curvature and cantilever length, can be derived using
Figure 2:
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Figure 2: Tip deflection d of a bent cantilever.

For small angles we use the approximation
sin(Q/2) ~ (6/2)* = (L/2r)%, which introduces less than
1% error for values of &2 up to 10°. Thus in this
approximation, combining Equations (1) and (2) yields
an expression for the deflection equation:
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3. OPTIMIZATION

3.1 Bimorph Cantilevers with Constant
Total Thickness

To simplify the deflection equation, we define
t/t; =x, by/b; =y and EJ/E; = c, all positive ratios. For
cantilevers with constant total thickness, Equation (3)
now can be rewritten as:
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This expression reveals that the deflection is
dependent on only relative values of Young’s modulus,
width and thickness, not absolute values. For a
bimorph cantilever with a specified material
combination and length, the second part of Equation (4)
is constant, so the deflection is maximized when f;(x,y)
has its maximum. The function fj(x,)) is plotted in
Figure 3, showing the existence of a constant maximum.

Figure 3: The function f;(x,y).

Taking the partial derivative of f;(x,)) with respect
to x, the optimization equation is found to be:

exly=1 5)

Thus fimey=1/4 and the maximum deflection equation
reduces to:
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This interesting result shows that for any given
combination of materials where the total bimorph
thickness is held constant, the maximum attainable
deflection is independent of the relative values of
Young’s modulus, width and thickness, and is
determined solely by the TEC difference, 47, the
cantilever length and the combined thickness. Gehring,
et al., reached the same conclusion in [2].

3.2 Bimorph Cantilevers with One
Constant and One Variable Layer
Thickness

For the less limited case where ¢, is constant and ¢,
is variable, the deflection equation can be rewritten as:
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The function f(x,y) is plotted in Figure 4. In this
case, in contrast to the constant total thickness example,
the maximum value is not a constant.

Figure 4: The function f>(x,).

Taking the partial derivative of fi(x,y) with respect
to x, the optimization equation is found to be:
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In Equation (9), fomay(x) is a function of the
relative thickness: the smaller the x the larger the value
of fopmay(®). When x> 0, fymag—> 1/4. By combining
Equations (7) and (9), the maximum deflection equation
reduces to:
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In practical terms, this result indicates that to
approach the ultimate maximum value of famax, One
would choose a relatively thin, wide and stiff variable
layer compared to the fixed thickness layer.

Equation (8) can be solved analytically. Since ¢
and y are positive, it is clear that there is one and only
one positive root [5]:
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This form of the solution is valid for values of
cy <1. For ¢y > 1, a real solution is also obtained.

Defining _1__1_, and N9~1_  gives:
4cy 8 4cy
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Figure 5 plots x versus cy, obtained from Equations (11)
and (12), along with the resulting values of faumax).
Higher values of ¢y lead to lower values of x and higher
famax. This figure suggests a useful procedure for
optimizing bimorph tip deflection when one layer
thickness is held constant. The designer would begin
by choosing materials from those available to maximize
the TCE difference. This choice of materials sets the
Young’s modulus ratio ¢, and in most cases the product
cy as well, since typically ym..=I1 due to fabrication
constraints. Figure 5 then provides the thickness ratio x
to give maximum tip deflection, and it also determines

f 2(max)-
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Figure S: x and f(max versus cy.

4. VERIFICATION

In this section, simulation results obtained from
CoventorWare are used to verify the analytical results.
The initial dimensions and material properties of a non-
optimized bimorph cantilever are given in Table 1.

Table 1: Materials properties and initial dimensions of
a bimorph cantilever used in simulation.

Layer 1 Layer 2

Polysilicon Aluminum
Initial Dimensions | 1000x100x10 | 1000x50x5
LxWxT (um)
Young’s Modulus | 165 70
(GPa)
TEC 2.8 232
(le-6)

Optimization is made for either constant total
thickness (15um) or constant polysilicon layer
thickness (10um). The tip deflection before
optimization is 52.6um for a 100K temperature change.
After optimization, the calculated deflections are
102pm and 76.1um, respectively. These outcomes are
summarized in Table 2, and are found to compare with
good agreement to the simulation results. For the
constant total thickness case, many width and thickness
ratios will give the same maximum deflection. For the
constant single layer thickness case, the maximum
deflection increases with increasing second layer width
and an associated decreasing second layer thickness.
As illustrated in Figure 6, the analytical approach
provides a method for determining the second layer
thickness for maximum deflection that is much more
straightforward than using repeated simulations.

Table 2: Cantilever dimensions and deflection before
and after optimization.

WidthxThickness Deflection
(um) (um)
Poly-Si Al Calcu. | Simu.
Before 100x10 50x5 52.6 54.4
optimization
When 100x4.73 50x10.27 | 102 102.8

t;+t; = const

100x5.92 100x9.08 | 102 104.1

When 100x10 50x9.76 | 64.7 65.9

£, = const
100x10 100x7.27 | 76.1 | 783
70
~ 60 |
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Figure 6: Comparison of simulation (dots) and
analytical (line) methods for finding the optimum
thickness for the bimorph of row 5 in Table 2.

5. CONCLUSIONS

Theoretical analysis of thermally actuated bimorph
cantilevers for maximum deflection is presented. An
analytical model is derived which allows quantitative
optimization of bimorph cantilever performance based
on material properties and structure dimensions. This
model is verified by simulation, showing that
substantial improvements in the design approach for
bimorph cantilevers are still possible.
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