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ABSTRACT

Resonant sensors and microsensors are one of the
most common used sensors in industry. Temperature
effect on the performance of such devices is of impor-
tance to the accuracy of measurement. In this paper,
we are interested in the modeling of such diaphragm
under thermal effect. We chose the dynamic analogue
of Saint-Venant plate model under uniform temperature
to analyze a circular diaphragm. The resulting equation
turns out to be similar to the classic problem of plate
stability under uniform in-plane loading. The model-
ing methodology can be applied to any type of ther-
mal loading. It is found that under the assumption of
isotropic materials with temperature-insensitive mate-
rial properties, the frequency drift depends mainly on
the temperature and the material properties are of no
significant influence. Also, we show that the frequency-
temperature relationship is nonlinear for the first mode
but almost linear for higher modes.

Keywords: Circular plate, Microsensor, Thermal load-
ing, Frequency drift.

1 INTRODUCTION

Resonant sensors are one of the most common used
sensors in industry. The applications range from fluid,
pressure to chemical sensing. The resonant sensors are
composed mainly, of three major elements: the res-
onator, vibration drive and detection mechanisms. In
the heart of the sensors is the resonator which may be
a beam, bridge or a diaphragm [1]. The sensor is de-
signed that the resonator’s natural frequency is a func-
tion of the measurand. According to the application,
the measurand alters the stiffness, shape, or mass of the
resonator which will alter the resonator’s resonant fre-
quency. Temperature is one of the main environmental
factors that influence the performance of such sensors.
There is a wide interest in controlling, compensating
such influence [2]. Investigation of the thermal fre-
quency drift in resonant microsensors using beam ele-
ments was carried out in [3]. To the author’s knowl-
edge, no such attempt was done to the microsensors us-
ing plate diaphragm. The focus of this paper is on the
analysis of such effect on a circular diaphragm resonant

Figure 1: Plate geometry.

sensor. Modeling of the diaphragm varies in the litera-
ture, but mostly use of the Kirchoff linear plate model
is quite common. In case of temperature field which
is function of in-plane parameters and not of thickness,
which the case for most thin diaphragms used in MEMS
based sensors, such model does not work well. We re-
sort to Saint-Venant thin plate model [4] for such appli-
cation.

2 PROBLEM FORMULATION

We consider the coupled heat equation and the dy-
namic version of the Saint-Venant equations for a ther-
mally excited circular plate. Figure 1 shows the geomet-
rical characteristics of the plate. The thermal loading
is assumed to be axisymmetric, and hence the plate vi-
brations are axisymmetric. They are governed by [5]
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Here, w(#, %) is the plate transverse displacement, F (7, %)
is the stress function, e is the dilatational strain due to
the thermal effect, T'(7,%) is the temperature distribu-
tion, p is the material density, A is the plate thickness, ¢,
is the heat capacity coefficient at constant pressure, E is
the modulus of elasticity, o is the coefficient of thermal
expansion, Q is the heat flux, and v is Poisson’s ratio.
It is assumed here that the material properties are not
functions of temperature.
For the compatibility relation, we note that
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where @ is the radial displacement. It follows from Eqgs.
(4)-(7) that
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Eliminating ¢ from Egs. (8) and (9), we obtain the
compatability equation
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For boundary conditions, we consider a clamped plate.

This case is important in most of MEMS devices, such as
sensors and micropumps, as it is a more realistic repre-
sentation of the actual boundary conditions. Therefore,
the boundary conditions are
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where R is the radius of the plate.

We consider the case in which the plate is exposed
to zero-heat flux Q = 0 and the temperature is kept
constant at the plate edge at Tp.

We introduce nondimensional variables, defined as
follows:
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Substituting Eq. (15) into Egs. (1), (2), and (10)-(14),
we obtain
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The last two terms on the right-hand side of Eq. (15)
represent the diffusion of heat and thermoelastic cou-
pling.

Usually, the thermal diffusion and thermoelastic cou-
pling terms are negligible because I'; and I'y are large
enough to neglect the thermoelastic coupling term [6].

Hence, Eq. (16) is reduced to
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and €=

Solving Eq. (23) subject to the boundary conditions
(22), we find that the nondimensional temperature dis-
tribution is given by

T(r,t)=1 (24)
Now, substituting Eq. (24) into Egs. (17)-(21) yields
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To this end, we solve the linear equation (26) subject

to the boundary conditions (28) and (29). The general
solution of the linear equation (26) can be éxpressed as
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Using the boundary condition, Eq. (29), we find that
Ci(t) = "‘% and Cy(¢) is an arbitrary function of
time.

Next, we let
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into Egs. (25)-(29) and obtain
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3 EIGENVALUE PROBLEM

Next, we assume a harmonic response of the form
w(r,t) = g(r)e™* (37)

and obtain the following eigenvalue problem for the nondi-
mensional mode shapes ¢;(r) and corresponding nondi-
mensional natural frequencies w;:

Vg +pV2p — w?p =0

Frequency of first modes
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Figure 2: Variation of the first nondimensional fre-
quency with the nondimensional parameter (tempera-
ture) p.

Therefore, Eq. (32) becomes
V4 +pV2¢ — w2 =0 (40)

The general solution of Eq. (40) can be expressed in
terms of Bessel functions as

o(r) = A1Jo(&ar) + A2Yo(&i7) + Aslo(&or) + A4Ko((§27'>)
41

where

§1=ﬁ@ﬂ@nﬂ (42)
& = \/ 3 [-p+ VP2 4] (43)

Substituting Eq. (41) into the boundary conditions,
yields that Ay = A4 = 0. which can be solved nu-
merically for the w, as a function of p and hence Tp. In
Figures 2-4, we show variation of the first three nondi-
mensional frequencies with p. Buckling occurs when
the first natural frequency is zero, which corresponds to
p = —14.68. It is clear from Figure 2 that the variation
of the fundamental (first) frequency with temperature
is nonlinear. In Figures 3 and 4, the variation is almost
linear which indicates that for higher frequencies, the
frequency variation with temperaure is almost linear.

4 CONCLUSIONS

We presented a methodology for deriving the equa-
tion that model a microsensor isotropic diaphragm un-
der thermal loading. The method is applicable to any
type of thermal loading. We chose the uniform temper-
ature field as a case study in this paper. We solved the

(38) eigenvalue problem to obtain the relation between the
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dr
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Figure 3: Variation of the second nondimensional fre-
quency with the nondimensional parameter (tempera-
ture) p.

Frequency of third mode
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Figure 4: Variation of the third nondimensional fre-
quency with the nondimensional parameter (tempera-
ture) p.

the assumption of an isotropic diaphragm, the frequency
change depends only on the temperature and does not
depend on the material properties. Also, it is found
that the relation between the fundamental frequency
and the temperature is of nonlinear type, but for the
higher frequencies the relation is more of a linear type.
The above frequency-temperature diagrams are of value
to the designers because of the nondimensional charac-
ter of the temperature. Another important result is the
occurrence of buckling at a certain temperature, which
should be avoided in the working environment of the
microsensor.
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