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ABSTRACT

This paper presents the implementation of a parallel

solver for the 3D Poisson equation applied to gradual

HBT simulation in a memory distributed multiproces-

sor. The Poisson equation was discretized using a �nite

element method (FEM) on an unstructured tetrahedral

mesh. Domain decomposition methods were used to

solve the linear systems. We have simulated a gradual

HBT, and we present electrical results and some mea-

sures of the e�ciency of the parallel execution for several

solvers. This code was implemented using a message{

passing standard libraryMPI and was tested on a CRAY

T3E.

Keywords: 3D Poisson equation, Gradual HBT, Do-

main Decomposition, Multiprocessors.

INTRODUCTION

Heterojunction bipolar transistors are nowadays an

active area of research due to interest in their high{speed

electronic circuit applications. For example InP/InGaAs

HBT's have attained frequencies of over 200GHz [1].

Development of simulators for HBT's is essential in

order to better understand their physical behaviour and

for design optimization. In this work we have studied

the implementation of a parallel solver for the 3D Pois-

son equation applied to gradual HBT simulation in a

memory distributed multiprocessor. This solver is a �rst

step in the development of a complete parallel 3D simu-

lator for HBTs, based on the 1D simulator that we pre-

sented in [2]. We have used the �nite element method in

order to discretize the Poisson equation. The properties

of the resulting linear systems and their high range make

it necessary to �nd adequate solvers as classic methods,

such as incomplete factorizations, are very ine�cient.

The majority of computer time is spent solving these lin-

ear systems, typically containing several thousand equa-

tions. We have studied various domain decomposition

methods in order to solve these systems.

In the next section we introduce the formulation of

the Poisson equation for gradual HBTs. The follow-

ing section presents some domain decomposition meth-

ods. Then we compare time of execution and iteration

numbers of these solvers as well as in
uence of Kirlov

subspace in a gradual AlGaAs/GaAs HBT. In the last

section, the main conclusions of this work are presented.

POISSON EQUATION

For studying electrical behaviour of a gradual hetero-

junction bipolar transistor such as the one in the Fig-

ure 2(a) Poisson equation has to be solved. In the bulk

semiconductor region this equation can be written as:

div("r ) = �q(p� n+N+
D �N

�

A ) (1)

where  is the electrostatic potential, q is the electron

charge, " is the dielectric constant of the material, n and

p are the electron and hole densities, and N+
D and N+

A

are the doping e�ective concentrations.

Assuming a single parabolic conduction band, the

electron density can be expressed as:

n = NcF1=2(�c) (2)

where Nc is the e�ective density of states in the conduc-

tion band, F1=2 is the Fermi{Dirac integral of order 1/2,

and �c is,

�c =
Efn �Ec

kT
(3)

From the aforementioned equations it is easy to obtain

the expression 4 for the electron concentration and, us-

ing a similar procedure, equation 5 for the hole concen-

tration:
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�
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where nien and niep can be calculated as follows:
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and �c and �v are:
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Note that �c and �v depend on the electrostatic po-

tential and the quasi{Fermi potentials. Since these mag-

nitudes are the unknowns in the numerical implementa-

tion of the model, an iterative solution process is estab-

lished in order to guarantee coherent results.

The formulation given by 4 and 5 for carrier con-

centrations is simple and compact. Parameters nien
and niep may include di�erent phenomena that a�ect

the concentrations at high doping levels: in
uence of

Fermi{Dirac statistics, changes in the energy levels and

variations in the e�ective densities of states.

Over the separation interface of two di�erent semi-

conductor regions could exist some super�cial charge

which it is necessary to include in the equation of Pois-

son. If this super�cial charge by area unit is expressed as

QI we obtain the following modi�ed Poisson equation:

div("r ) = �q(p� n+N+
D �N

�

A ) +QI (10)

This equation is scaled using the scaling presented in

[3]. Next, the �nite element method should be applied in

order to discretize the scaled equations, thus obtaining

a system of nonlinear equations, with range N , where

N is the number of nodes of the discretization [4].

DOMAIN DECOMPOSITION

SOLVERS

In recent years domain decomposition has emerged

as a fairly general paradigm for solving linear systems

of equations on parallel computers [5]. A domain is par-

titioned into several sub{domains, and some techniques

are used to recover the global solution by a succession

of solutions of independent subproblems associated with

the subdomain [6].

If we consider the problem of solving the Poisson

Equation on a domain 
 partitioned into p subdomains


i, then domain decomposition methods attempt to solve

the problem on the entire domain by a problem solution

on each subdomain 
i. This means that 
i's are such

that


 =

p[
i=1


i (11)

Figure 1 is an illustration of a subdomain of the phys-

ical domain. Each node belonging to a subdomain is

Internal 
nodes

Local interface nodes

Figure 1: Nodes in a subdomain

an unknown of the problem. It is important to distin-

guish between three types of unknowns: interior nodes

are those that are coupled only with local nodes, local

interface nodes are those coupled with external nodes

as well as local nodes, and external interface nodes are

those nodes in other subdomains which are coupled with

local nodes. We label the nodes by subdomains, �rst the

internal nodes and last the interface nodes.

We have studied several types of domain decomposi-

tion preconditioners such as Additive Schwarz and oth-

ers based on Schur complement techniques.

The Additive Schwarz procedure is similar to a block-

Jacobi iteration and consists of updating all the new

components from the same residual. The basic additive

Schwarz iteration would therefore be as follows:

1.- Obtain yi;ext
2.- Compute local residual ri = (b�Ax)i
3.- Solve Ai�i = ri
4.- Update solution xi = xi + �i
In order to solve the linear system Ai�i = ri a stan-

dard ILUT preconditioner combined with GMRES for

the solver associated with the blocks is used [6].

The Schur complement techniques refer to methods

which iterate on the interface unknowns only, implicitly

using internal unknows as intermediate variables.

Consider the linear system for the subdomain 
i de-

scribed as,�
Bi Ei

Fi Ci

��
xi
yi

�
=

�
fi
gi

�
(12)

in which B is assumed to be non{singular. From the

�rst equation of 12 the unknown x can be expressed as

x = B�1(f �Ey) (13)

Upon substituting this into the second equation of 12,

the following reduced system is obtained

(C � FB�1E)y = g � FB�1f (14)

Where the matrix S = C � FB�1E is called the

Schur complement matrix associated with the y variable.

If this system can be solved, all the interface variables



Table 1: Doping pro�le of gradual HBT
Ne� (cm

�3) � X � Y � Z

E (n{Al0:3Ga0:7As) 5.0 1017 0.5 1.0 0.3

B (p{GaAs) 5.0 1019 1.5 3.0 0.12

C(n{GaAs) 1.0 1017 1.5 3.0 0.5

SC(n{GaAs) 2.0 1018 3.0 6.0 0.3

y will become available, and thus it will be possible to

compute the remaining unknowns by using 13. Due to

the particular structure of B, observe that any linear

system solution with it decouples into p separate sys-

tems. The parallelism in this situation arises from this

natural decoupling.

EVALUATION

We have analyzed a gradual HBT device such as the

one in Figure 2(a). It has four zones: the sub{collector

(SC), the collector (C), the base (B), and the emitter

(E). Some of the main parameters are the doping pro�le

and the dimensions in �m of each zone, which are shown

in table I.

In order to reduce the simulation time, the program

was developed for distributed{memory multicomputers,

using the MIMD strategy (Multiple Instruction{Multiple

Data) under the SPMD paradigm (Simple Pro-gram{

Multiple Data). These machines consist of a certain

number of processors or nodes interconnected by a net-

work with a certain topology. Our program was im-

plemented using the MPI message passing standard li-

brary [7]. The main advantage of using this library is

that it is presently implemented in many computers, and

this guarantees the portability of the code [8], [9]. All

results were obtained on a CRAY T3E multicomputer

using the MPI communication library, hence portability

to other parallel machines is guaranteed.

The voltage in thermal equilibrium for this device

in a cross section (plane x z) of the HBT is showed

in �gure 2(b), for a mesh with 13856 nodes and 70699

elements.

All preconditioners converge, however there are sig-

ni�cant di�erences in execution time. This simulator

takes several minutes to solve the Poisson equation in

equilibrium using the Newton method, as it needs to

solve several linear systems.

Figure 3(a) shows the performance results using ad-

ditive Schwarz preconditioner for di�erent values of the

�ll{in parameter. In Figure 3(b) the in
uence of the

size of Krylov subspace for the resolution of only a lin-

ear system is shown. For this preconditioner, using low

levels of �ll{in and a small size of Krylov subspace leads

to lower execution time.

We have used a mesh with more nodes to compare

the three solvers. Figure 4 shows the execution time

Table 2: Table II. Iterations for Additive Schwarz, Schur

with FGMRES and Schur with ILU

Additive Schwarz Schur{FGMRES (Schur{ILU)

2 465 808 22

4 371 710 18

6 423 808 23

8 628 1140 23

for Additive Schwarz and others based on Schur com-

plement techniques. For the latter case the Schur Com-

plement matrix is solved by using two di�erent precon-

ditioners, FGMRES and ILU. The best results were ob-

tained using Schur combined with ILU preconditioner,

because it has the least number of iterations, as is shown

in table II.

CONCLUSIONS

In this work we have studied domain decomposition

solvers applied to 3D Poisson Equation for a gradual

AlGaAs/GaAs HBT. The code was implemented using

the message passing interface library MPI. All the data

were measured on a multicomputer CRAY T3E.

In order to solve systems of linear equations, which is

the most CPU consuming part, we have tested di�erent

methods of domain decomposition, which present great

advantages as opposed to the classic methods, as regards

to speed and memory requirements.
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Figure 3: Time of execution to Additive Schwarz
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Figure 4: Time of execution for several solvers


