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ABSTRACT

In this paper we present a meshless based Finite Cloud
Method (FCM) for thenumerica solution of partial
differential equations (PDEs) governing piezoelectricity
Using apoint distribution, FCM constructs interpolatio
functions without assuming any connectivity between th
points. A collocation approach is employed to obtain a
solution at every point within the domain.

The coupled mechanical and eectrical equations of a
piezod ectric material are solved by an iterative FCM. This
approach has been verified on two static two-dimensonal
piezod ectric problems with exact analytical solutions.
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INTRODUCTION

The sensor and actuation properties of piezoeectric
materials have led to anumber of gpplications in the world
of microelectromechanical systems (MEMS) [1].
Applications of piezoelectric materials include pressure
sensors, strain gauges, accelerometers, ultrasonic motors,
and micro-actuators.

Currently, modeling of these devices requires generation
of a two or athree-dimensional mesh to numerically solve
the coupled mechanical and electrical equations of
piezodectricity.  The cregtion of ameshcanbe
computationally very expensive, especidly when the
geometry of the device is complicated. Inthis paper, we
present a new meshless technique, whichisreferred to asa
Finite Cloud Method (FCM). Ingead of a mesh, FCM
requires only a distribution of points over the domain to
solve the coupled electromechanical equations.

The governing equations are sdtisfied at every point
using apoint collocation approach. Starting with an initial
assumption of zero mechanical displacements, the electrical
equation is solved for the eectric potential. The electric
potential solution is then used in the mechanical equation
to solve for the displacements. The electrical equations are
solved again with the newly computed displacements, and
the procedure is repeated until a self-consistent solution is
obtained.

The iterative FCM is employed to solve a pair of
two-dimensional static piezodectric stripswith different
loading conditions. The calculated solution to each
problem agrees with the analytical results giveninth
literature.

GOVERNING EQUATIONS
The constitutive equations for a piezoelectric materia

can be expressed in terms of the strains and the dectric
fidd [2]:
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where o, &, D;, and E, are the stress tensor, the strain
tensor, the electric displacement vector, and the electric
field vector, respectivey. c%, e, and & are the elastic
gtiffness, piezodectric,c, and dielectric  constants,
respectivdy. Superscript E and ¢ represent coefficients
measured at constant electric field and gstrain, respectively.
The constitutive equations can aso be written in terms of
the stress and the electric field:
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where &, d, and & are the dastic compliance matrix,

piezoel ectric matrix, and dielectric constants, respectivey.
Superscript o represents coefficients measured at constant
stress. Relationships between (cF, e, &) and (<, d, &) are
givenin[2].

Strains arerelated to displacementsb
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and electricfield is related to electric potential b

Ei = _§0’i (4)

The governing mechanical equilibriumis
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and the governing electrostatic equilibriumis

NUMERICAL APPROACH
The interpolation functions employed by the FCM are
based on the reproducing kernel technique [3]. Intwo-
dimensions, the reproducing kernel technique for an
approximate solution can bewritten as

u?(x,y) :J'Wd(x— s,y — s)u(s)ds (8)

where U is an approximation of u, and wy(x-s,y-S) is the
corrected kernel function. In discrete form, equation (8)
can be expressed as
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where NP is the number of pointsin the domain, N,(x) is the
interpolation function at point I, and u, is a nodal value at

point |. Theinterpolation function N,(x) is defined as

N, (% Y) =CX =X,y = y)Ww, (X =%,y — ¥, )AV, (10)
where C(x-x,y-y)) is the correction function, wy(x-x,,y-y;) iS
the kernd function centered at the node (x,,y;), and AV, isa
measure of the domain surrounding point |. The two-

dimensional kernel function, wy(x-x;,y-y;), is taken as the
product of two one-dimensional cubic spline functions.

The correction function for the two dimensiona
piezod ectric equations has thefollowing form:
Clx=x,y=y) =G +a(x V(x-x) +e,(xy(y-y)  (11)
+ (6 Y)(X= X )2+ e, (Y = V) + G Y)(X =X ) (Y~ Y,)

The coefficients of the correction function are foundb
satisfying the appropriate reproducing conditions for
particular order derivative [4].

Compute K,

LU factor Ko — Le Ue
Compute K,

LU factor Ky, » Ly Upy,

given u9=0
for(i = 1,2,...until convergence)
{ .

compute fo(u'™)

solve LU ¢ = fo

compute f,(¢")
solve LUp u® = f,,
}

end

Algorithm 1: Aniterative approach for solving the
governing electromechanical equations of piezoel ectricit

A collocation approach for the electromechanical
equations using the FCM interpolati on functions gives
Kep = fe (12
Kyu=f, (13)
where K. isan NP x NP matrix of electrical coefficients, ¢
isan NP x 1 vector of unknown potentials, foisan NP x 1
vector of electrical forcing terms dependent on the
mechanical displacements, K., is a 2NP x 2NP matrix of
mechanical coefficients, uisa2NP x 1 vector of unknown
displacements, and f,, is a 2NP x 1 vector of mechanical
forcing terms dependent on the electric potential.

The coupled electromechanical equations can now be
solved using the iterative technique detailed in Algorithm 1.
Thefirg sep isto compute Keand K, Since the coefficient
matrices are not electromechanically coupled, they areonl

computed and LU factored once. Making an assumption of
zero mechanical displacements, f, is calculated, and the
electrica system of equations can be solved for the
unknown ¢". Once ¢ is known, f,, can be computed, and
the mechanica system can be solved for the unknowns u®.
The displacements will be used inthenext iteration to
compute f., and the algorithm will continue until ¢ and u
converge to aself-cond stent solution.

RESULTS
Using the iterative Finite Cloud Method, two static
piezodectric problems were solved. The same material
(PZT-5) was considered for both problems. PZT-5
properties along with important dimensions are summarized
in Table 1 [5]. Both examples assume the material is
transversely isotropic.

Table 1: Material Properties and Dimensions

Sy | 164E-6mmiN | dy | -172 E-9mm/V
S | -7.22E-6mm?/N | dy | 374 E-9mm/V
S, | 188E-6mm?N | dis | 584 E-9 mm/V

S | 47.5E-6 mm?/N -1.5135 E-7N/V?
Ell

0, | -5.0 N/mm? 3 | -1.5135E-7N/V?
o, |20.0 N'mm?® V, | 1000V
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Figure 2: Piezodl ectric strip subjected to a uniform stress
and an applied voltage

The first problem consders a 1.0mm by 1.0 mm
piezodectric strip, polarized in the vertical direction,
subjected to a uniform stressin the y direction and an
applied voltage as shown in Figure 2. In this example, the
applied dectric field is perpendicular to the polarization of
the material resulting in a shear drain due to the
piezodectric effect. Under the action of the compressive
stress, the piezo-strip experiences anegative strain in the z-
direction and expands slightly in the x direction due to the
Poisson effect. Plots of the computed mechanical
displacements aregiven in Figure 3 and Figure 4. The grid



in the background of Figure 5 represents the original shape
of the strip before any loading. The computed potential is
given in Figure 6. Both the mechanica displacements and
the potential distribution match with the exact solution
given in [6].
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Figure 4: Mechanical deformation
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Figure 6: Potential distribution

The second example, as shown in  Figure 7, consider
another 1 mm by 1mm piezoelectric strip subjected to an
applied voltage and a linearly varying stress.
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Figure 7: Piezo-strip subjected to alinearly varying stress
and an applied voltage

Because the eectric field isin the opposite direction of
the polarization, the piezo-strip will contract in the z-
direction and expand along the x-direction. The shape of
the applied stress will cause bending in the strip. The
mechanical displacements are given in Figure 8 and Figure
9. The grid in the background of Figure 10 representsthe
original shape of the piezo-strip before applying any
voltage or stress. Figure 11 shows a plot of the potential
distribution. Both the mechanica displacements and
potential distribution match with the exact solution givenin

6].
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Figure 12: Point distribution with randomly placed interior
nodes

Toillustrate the flexibility of the meshless FCM method,
example 2 was also solved using a 5by 5grid with
randomly placed interior points. A plot of the point
distribution is given in Fgure 12and the computed
mechanical deformation is givenin Figure 13. The results
again match with the exact solution. This exampl
illustrates that FCM can generate accurate results regardliess
of the point distribution used.
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Figure 13: Mechanical defm()mFmati on using arandom
distribution of points

CONCLUSION

The Finite Cloud Method has been applied to solve
the coupled partial differential equations governing
piezodectricity. Results from the two Static piezoelectric
problems indicate that the method can accurately mode the
static behavior of single layer piezodectric devices
subjected to avariety of loading conditions. FCM was able
to solve both examples using a smple distribution of points
rather than having to generate a mesh of the domain. It was
also shown that FCM can easily handle random point
distributions without any specia condderations. In
summary, the Finite Cloud Method is a promising new
method for modeling piezoel ectric devices.
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