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ABSTRACT
     In this paper we present a meshless based Finite Cloud
Method (FCM) for the numerical solution of partial
differential equations (PDEs) governing piezoelectricity
Using a point distribution, FCM constructs interpolatio
functions without assuming any connectivity between th
points.  A collocation approach is employed to obtain a
solution at every point within the domain.
     The coupled mechanical and electrical equations of a
piezoelectric material are solved by an iterative FCM.  This
approach has been verified on two static two-dimensional
piezoelectric problems with exact analytical solutions.
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INTRODUCTION
     The sensor and actuation properties of piezoelectric
materials have led to a number of applications in the world
of microelectromechanical systems (MEMS) [1].
Applications of piezoelectric materials include pressure
sensors, strain gauges, accelerometers, ultrasonic motors,
and micro-actuators.
     Currently, modeling of these devices requires generation
of a two or a three-dimensional mesh to numerically solve
the coupled mechanical and electrical equations of
piezoelectricity.  The creation of a mesh can be
computationally very expensive, especially when the
geometry of the device is complicated.  In this paper, we
present a new meshless technique, which is referred to as a
Finite Cloud Method (FCM).  Instead of a mesh, FCM
requires only a distribution of points over the domain to
solve the coupled electromechanical equations.
     The governing equations are satisfied at every point
using a point collocation approach.  Starting with an initial
assumption of zero mechanical displacements, the electrical
equation is solved for the electric potential.   The electric
potential solution is then used in the mechanical equation
to solve for the displacements. The electrical equations are
solved again with the newly computed displacements, and
the procedure is repeated until a self-consistent solution is
obtained.

The iterative FCM is employed to solve a pair of
two-dimensional static piezoelectric strips with different
loading conditions.  The calculated solution to each
problem agrees with the analytical results given in th
literature.

GOVERNING EQUATIONS
     The constitutive equations for a piezoelectric material
can be expressed in terms of the strains and the electric
field [2]:
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where σp, εq, Di, and Ek are the stress tensor, the strain
tensor, the electric displacement vector, and the electric
field vector, respectively. cE, e, and ξε are the elastic
stiffness, piezoelectric, and dielectric constants,
respectively.  Superscript E and ε represent coefficients
measured at constant electric field and strain, respectively.
The constitutive equations can also be written in terms of
the stress and the electric field:
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where sE, d, and ξσ are the elastic compliance matrix,
piezoelectric matrix, and dielectric constants, respectively.
Superscript σ represents coefficients measured at constant
stress.  Relationships between ( cE, e, ξε) and (sE, d, ξσ) are
given in [2].
Strains are related to displacements b
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and electric field is related to electric potential b
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The governing mechanical equilibrium is
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ijij fσ (5)

and the governing electrostatic equilibrium is

0, =iiD (6)

NUMERICAL APPROACH
     The interpolation functions employed by the FCM are
based on the reproducing kernel technique [3].  In two-
dimensions, the reproducing kernel technique for an
approximate solution can be written as
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where ua is an approximation of u, and wd(x-s,y-s) is the
corrected kernel function.  In discrete form, equation (8)
can be expressed as
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where NP is the number of points in the domain, NI(x) is the
interpolation function at point I, and uI is a nodal value at
point I.  The interpolation function NI(x) is defined as
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where C(x-xI,y-yI) is the correction function, wd(x-xI,y-yI) is
the kernel function centered at the node (xI,yI), and ∆VI is a
measure of the domain surrounding point I. The two-
dimensional kernel function, wd(x-xI,y-yI), is taken as the
product of two one-dimensional cubic spline functions.
     The correction function for the two dimensional
piezoelectric equations has the following form:
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The coefficients of the correction function are found b
satisfying the appropriate reproducing conditions for 
particular order derivative [4].

Algorithm 1: An iterative approach for solving the
governing electromechanical equations of piezoelectricit

     A collocation approach for the electromechanical
equations using the FCM interpolation functions gives

ee fK =φ (12)
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where Ke is an NP x NP matrix of electrical coefficients, φ
is an NP x 1 vector of unknown potentials, fe is an NP x 1
vector of electrical forcing terms dependent on the
mechanical displacements, Km is a 2NP x 2NP matrix of
mechanical coefficients, u is a 2NP x 1 vector of unknown
displacements, and fm is a 2NP x 1 vector of mechanical
forcing terms dependent on the electric potential.
     The coupled electromechanical equations can now be
solved using the iterative technique detailed in Algorithm 1.
The first step is to compute Ke and Km.  Since the coefficient
matrices are not electromechanically coupled, they are onl

computed and LU factored once.  Making an assumption of
zero mechanical displacements, fe is calculated, and the
electrical system of equations can be solved for the
unknown φ(i).  Once φ(i) is known, fm can be computed, and
the mechanical system can be solved for the unknowns u(i).
The displacements will be used in the next iteration to
compute fe, and the algorithm will continue until φ and u
converge to a self-consistent solution.

RESULTS
     Using the iterative Finite Cloud Method, two static
piezoelectric problems were solved.  The same material
(PZT-5) was considered for both problems.  PZT-5
properties along with important dimensions are summarized
in Table 1 [5].  Both examples assume the material is
transversely isotropic.

Table 1: Material Properties and Dimensions
S11 16.4 E-6 mm2/N d31 -172 E-9 mm/V
S12 -7.22 E-6 mm2/N d33 374 E-9 mm/V
S22 18.8 E-6 mm2/N d15 584 E-9 mm/V
S55 47.5 E-6 mm2/N ξ11 -1.5135 E-7 N/V2

σo -5.0  N/mm2 ξ33 -1.5135 E-7 N/V2

σ1 20.0  N/mm3 Vo 1000 V
L 1.0 mm h 0.5 mm

Figure 2: Piezoelectric strip subjected to a uniform stress
and an applied voltage

     The first problem considers a 1.0 mm by 1.0 mm
piezoelectric strip, polarized in the vertical direction,
subjected to a uniform stress in the y direction and an
applied voltage as shown in Figure 2. In this example, the
applied electric field is perpendicular to the polarization of
the material resulting in a shear strain due to the
piezoelectric effect.  Under the action of the compressive
stress, the piezo-strip experiences a negative strain in the z-
direction and expands slightly in the x direction due to the
Poisson effect. Plots of the computed mechanical
displacements are given in Figure 3 and Figure 4.  The grid
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Compute Km

LU factor Km → Lm Um

given u(0) = 0
for(i = 1,2,…until convergence)
{
     compute fe(u

(i-1))
     solve LeUe φ(i) = fe

     compute fm(φ(i))
     solve LmUm u(i) = fm
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in the background of Figure 5 represents the original shape
of the strip before any loading.  The computed potential is
given in Figure 6.  Both the mechanical displacements and
the potential distribution match with the exact solution
given in [6].
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Figure 3: u displacement
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Figure 4: w displacement
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Figure 4: Mechanical deformation
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Figure 6: Potential distribution

     The second example, as shown in  Figure 7, consider
another 1 mm by 1mm piezoelectric strip subjected to an
applied voltage and a linearly varying stress.

Figure 7: Piezo-strip subjected to a linearly varying stress
and an applied voltage

     Because the electric field is in the opposite direction of
the polarization, the piezo-strip will contract in the z-
direction and expand along the x-direction.  The shape of
the applied stress will cause bending in the strip.  The
mechanical displacements are given in Figure 8 and Figure
9.  The grid in the background of Figure 10 represents the
original shape of the piezo-strip before applying any
voltage or stress.  Figure 11 shows a plot of the potential
distribution.  Both the mechanical displacements and
potential distribution match with the exact solution given in
[6].
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Figure 8: u displacement
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Figure 9: w displacement
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Figure 10: Potential distribution
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Figure 11: Mechanical deformation

Figure 12:  Point distribution with randomly placed interior
nodes

     To illustrate the flexibility of the meshless FCM method,
example 2 was also solved using a 5 by 5 grid with
randomly placed interior points. A plot of the point
distribution is given in Figure 12 and the computed
mechanical deformation is given in Figure 13.  The results
again match with the exact solution.  This exampl
illustrates that FCM can generate accurate results regardless
of the point distribution used.
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Figure 13: Mechanical deformation using a random
distribution of points

CONCLUSION
The Finite Cloud Method has been applied to solve

the coupled partial differential equations governing
piezoelectricity.  Results from the two static piezoelectric
problems indicate that the method can accurately model the
static behavior of single layer piezoelectric devices
subjected to a variety of loading conditions.  FCM was able
to solve both examples using a simple distribution of points
rather than having to generate a mesh of the domain.  It was
also shown that FCM can easily handle random point
distributions without any special considerations.  In
summary, the Finite Cloud Method is a promising new
method for modeling piezoelectric devices.
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