
Oscillating Diaphragms

J. McEntee*,  L. Bowman**

* McEntee Engineering, PO Box 568, Castine, ME 04421, USA
** Sunpower, Inc., PO Box 2625, Athens, OH 45701, USA

ABSTRACT
The manufacture of miniature Stirling cycle cryocoolers, using
standard micro-machining techniques and materials has been
pursued by the authors [1].  A MEMS based cryocooler would
allow integration of a cryogenic cooling system directly into a cryo-
electronic device.  Resonant bossed diaphragms were proposed as
the means to sweep the working gas in the Stirling cooler, replacing
the pistons and displacers found in macro scale free-piston
machines. Analysis of round, bossed diaphragms led to the
realization that there exists shape factors by which the swept
volume and kinetic energy of any diaphragm can be characterized.
Knowledge of the volume swept by a diaphragm allows for the
calculation of a potential energy associated with diaphragm
deflection.  Knowledge of the potential and kinetic energies allows
for the design of a diaphragm of known dynamic characteristics
operating in a closed gas space with large gas pressure spring and
damping effects.
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INTRODUCTION

MEMS based Stirling cryocoolers would allow integration of a
cryogenic cooling inside a microelectronics package, offering
performance and cost benefits.  Thermodynamic and fluid dynamic
behavior of high frequency Stirling cycle machines have been
examined analytically [2] and experimentally [3] and no barrier to
the practical implementation of such machines has been found.

Resonant bossed diaphragms are proposed as the means to sweep
the working gas in the Stirling cooler, replacing the pistons and
displacers found in macro scale free-piston machines.  In these
machines motions are unconstrained by linkages: amplitudes of
motion and phase angles are determined by thermodynamic cycle
properties and dynamic properties of components.  Diaphragm
design is constrained by system level parameters, including the
requirements for a certain swept volume of working gas, a specific
resonant frequency, and a characteristic Q factor [4].

Analysis of round, bossed diaphragms led to the realization that
there exists a Volume Shape factor by which the swept volume of
any diaphragm can be characterized.  This factor is determined by
edge conditions and the solidity ratio: the ratio of boss diameter to

diaphragm diameter.  An analogue of the Volume Shape factor was
found in the Energy Shape factor, which characterizes the kinetic
energy of a moving diaphragm for given diaphragm dimensions.
Comparison with finite element models of square bossed
diaphragms show that the same factors can be used in the design of
square diaphragms.  Using shape factors appropriate dimensions
for a diaphragm can be chosen, and the resonant frequency in the
presence of significant gas pressure can be predicted.  Shape factors
greatly simplify the design process for resonant diaphragms
oscillating in a high pressure gas, and contribute to an understanding
of the fundamental behavior of oscillating diaphragms.

Circular and square diaphragms were etched, and test results
indicated that the theoretically derived shape factors are correct,
although difficulties in maintaining uniform diaphragm thickness, as
well difficulties in achieving fully fixed edge conditions, weaken the
correlation between experimental data and theory.

ANALYSIS OF FLAT DIAPHRAGMS

Analysis of the static deflection of diaphragms is well documented
in the classical plate bending literature.  Many researchers have
developed small and large deflection analysis for constant thickness
plates [5].

Volume Displaced by Diaphragms
Using standard assumptions of linear behavior the deflection of a
fixed edge, constant thickness diaphragm loaded by transverse
pressure is given by
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where y is the deflection at radius r, under applied pressure P, for a
diaphragm of radius a, thickness h, Young’s Modulus E, and

ν.  The maximum deflection of the diaphragm which
occurs at the center (r = 0) is
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By integration of Equation 1 the volume swept by a moving
diaphragm is found
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Substituting Equation 2 into 3 we find that the swept volume of the
diaphragm is related to the maximum deflection and the diaphragm
area.
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A constant of proportionality K, the Volume Shape Factor, relates
the volume swept by a moving diaphragm to area and maximum
deflection, and is a geometric property of the deflected diaphragm
shape.  For the case above, a constant thickness fixed edge
diaphragm with small deflections, the K factor equals 1/3.  For
other diaphragm shapes, the volume shape factor is different,
reflecting the differences in the deflection profile.  This volume
shape factor allows the volume displacing behavior of a diaphragm
to be characterized in a straightforward manner.

Kinetic Energy of Diaphragms
To understand the dynamic response of a diaphragm it is critical
that the kinetic and potential energy characteristics of the
diaphragm be recognized.  Kinetic energy of the diaphragm can be
determined in much the same manner as swept volume.  For a
diaphragm oscillating at fixed radial frequency ω, with a deflection
profile equal to the static deflection profile, integration will lead to a
kinetic energy T, for the diaphragm.
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where ωy is the speed of mass increment dm.  For a circular
diaphragm of constant thickness the kinetic energy is
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which on integration gives
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Rearranging Equation 6 in terms of maximum deflection y0 leads to
a simplified form for kinetic energy
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which can be further rearranged to give a general form

T ....1

2
m ω y 0

2 F

{7}

where F is the Energy Shape Factor for the diaphragm.  The factor
F relates the kinetic energy of the diaphragm to total diaphragm
mass and to maximum deflection.  There exists an energy shape
factor F for every configuration of diaphragm, and the value of F
depends on the deflected profile of the diaphragm.  For a circular,
constant thickness diaphragm with small deflections the energy
shape factor F is 1/5.

Potential Energy of an Oscillating Diaphragm
For a diaphragm oscillating in a gas space with significant gas
pressure variations the potential energy comprises two
components.  The first is the potential energy associated with the
mechanical energy stored in the deflected diaphragm.  Second is the
potential energy stored in the compressed gas in the working
chamber.  The potential energy of a spring is the product of force
and the distance through which the force acts.  The work done by a
diaphragm as the diaphragm moves through a quarter cycle
compressing the working gas is also given by the product of force
and the distance through which the force acts.  However this work
contains both the potential energy of the diaphragm and one quarter
of the power dissipated (D/4) in the thermodynamic cycle being
implemented.  Knowing the system cycle requirements we can
determine the pressures which a diaphragm must generate, and the
work required per cycle (D).
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where Ugas is the potential energy of the compressed gas, D is the
work per cycle done on the gas by the diaphragm, P is the pressure
against which the diaphragm acts, and y is the deflection of the
diaphragm.  Knowing the deflection profile of the diaphragm
(Equation 1) and knowing that the pressure, P, in the work space
takes the form

P .P c sin( ).ω t φ



where Pc is the amplitude of the pressure swing and φ is the phase
angle of P relative to deflection y, the sum of gas space potential
energy and one quarter of the cyclic work is
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Substituting for the swept volume (Equation 4(a)) considerably
simplifies Equation 9(a), giving
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Now it is clear that the work done per cycle is
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So the gas space potential energy is simply
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where V is the volume swept by the diaphragm, Pc is the pressure
amplitude in the working space and φ is the phase angle between
pressure swing and diaphragm amplitude.

To calculate the potential energy due to the spring effect of the
diaphragm itself we simply must realize that a pressure P required
to deflect a diaphragm is a direct measure of the spring stiffness of
the diaphragm.  Thus the potential energy contribution from the
diaphragm is
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and the total potential energy, U, is
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where Pc is the working space gas pressure amplitude and P is the
pressure required to deflect the diaphragm through swept volume
V.

ANALYSIS OF BOSSED DIAPHRAGMS

In the initial design of a micro-refrigerator diaphragm it was clear
that flat diaphragms did not have a sufficiently high kinetic energy

to resonate the diaphragm at the machine operating condition.
Adding a central boss to the diaphragms was found to be an
effective way to increase kinetic energy of the moving diaphragm.
The preceding analysis which shows the existence of energy and
volume shape factors was adapted for bossed diaphragms.

Figure 1:  Geometry of circular bossed diaphragms.

To analyze a circular diaphragm with a thick central section it is
necessary to separate the diaphragm into two separate plates of
differing thickness.  Bending moments and shear forces are
transmitted between plates and lateral and angular deflections are
equal at the junction.  The use of these compatibility conditions and
of plate bending equations [6] allows for the solution of the
deflection profile for a bossed diaphragm, and volume and energy
shape factors can be determined as before.
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Figure 2:  Energy shape factor/ volume shape factor for boss
diameter to diaphragm diameter (b/a) ratios and boss thickness to
diaphragm thickness (h2/h1) ratios

To generate the greatest kinetic energy contribution from a
diaphragm for a given swept volume the largest ratio of energy
shape factor to volume shape factor is desired.  Figure 2 shows this
ratio as a function of solidity ratio and of boss to diaphragm
thickness ratio.  As the boss becomes thicker and stiffer the volume
shape factor tends towards a limit for a given solidity ratio (b/a).
The energy shape factor continues to increase reflecting the larger
mass associated with a thicker boss.  From Figure 2 it is clear that
for increasing boss thickness the maximum energy to volume shape
factor ratio occurs at decreasing values of b/a.  Thus an optimum
diaphragm for our conditions has a small but thick boss.



Finite element models of round bossed diaphragm have confirmed
the results presented in Figure 2.  Finite element models of square
bossed diaphragms and bossed diaphragms of rhomboidal aspect
show that their volume and energy shape factors closely follow
those of the circular diaphragm that could be inscribed in each
respective shape.   Volume shape factors for square diaphragms are
within +/- 4% of those for circular diaphragms, while those for
rhomboidal diaphragms are within +/- 7%.  Energy shape factors for
square diaphragms are under-predicted by between 3% to 12%,
while those for rhomboidal diaphragms are over-predicted by no
more than 10%.

Diaphragm Design Procedure
Functional requirements of a micro-refrigerator diaphragm dictate
the design.  A given volume of gas must be moved against a
specified gas pressure at a preset oscillation frequency.  Assuming a
given solidity ratio a set of three simultaneous equations with four
unknowns can be constructed from previous arguments.  A given
amplitude of vibration is determined from Equation 2;  a given
swept volume of gas is specified by Equation 4(b); setting kinetic
energy equal to potential energy by setting Equation 7 equal to
Equation 13 defines a resonance condition.  A final equation is
required for closure.  We relate diaphragm thickness to maximum
deflection in order to control the degree of non-linear deflection
experienced by the diaphragm.
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where z is a factor less than 0.3 for linear behavior.  Solving these
equations results in a functional diaphragm design.

EXPERIMENTAL VERIFICATION

Silicon circular bossed diaphragms were isotropically etched giving
twelve independent diaphragm designs with differing b/a and h2/h1
ratios.  Static deflection and dynamic resonance tests were carried
out.  Static testing indicated that diaphragms were less stiff than
theory would suggest.  This is explained by considering the edge
conditions imposed on the diaphragm.  The theory assumes a fully
restrained edge but it is difficult to replicate such a boundary
condition under experimental conditions due to the thinness of the
silicon wafer which provides the edge support for the diaphragm.
In addition there were significant thickness variations across the
diaphragm due to processing difficulties.  These factors combined
to cause deviation of the experimental results from theory.  A
simple, diaphragm specific, empirical factor was used to correct the
theory to match the experimentally measured static behavior.

Diaphragm resonant frequencies were measured.  After modifying
the stiffness of the diaphragm using the empirical factor found by

static testing the predicted resonance frequency matched the
experimental values well.

Eighteen square and rectangular bossed diaphragms were
manufactured by anisotropic etching.  These were tested to evaluate
static and dynamic behavior.  Again the edge conditions contributed
to a reduction in diaphragm stiffness, but again the discrepancy
between theory and experiment could be corrected by an empirical
factor.  Resonant frequencies were accurately predicted by theory
after edge compliance was accounted for.

Attempts were made to analytically predict the degree of edge
compliance, but variations in diaphragm mounting made it difficult
to correlate empirical stiffness factors with theory.

CONCLUSIONS

A method of predicting the dynamic performance of bossed
diaphragms has been developed which provides insights on the
fundamental parameters that determine such performance.  The use
of energy and shape volume factors expedited the design process,
generating acceptable piston diaphragm designs with a minimal of
time consuming numerical analysis.  Experimental measurements on
circular and square bossed diaphragms verified the fundamental
theory for static and dynamic behavior, but exposed the need to
properly account for the actual edge conditions applied by the
diaphragm mounting.
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