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A lumped-mass model is used to improve the design of the
valveless diffuser pump. The model is implemented using
MATLAB and tested for different previously reported
pumps. The flow-pressure characteristics are predicted for
different excitation levels. It is seen that low chamber
pressure limits the possible excitation level. A pump with
two serially connected pump chambers working in anti-
phase is found advantageous compared with a single
chamber pump. Indication is found that down scaling of the
diffuser elements from 80×80 µm throat cross-sectional area
to 40×40 µm throat cross-sectional area increase the
attainable pressure head. The possibility to use deposited
PZT instead of discs fixed with adhesive is shown
promising.
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The valveless diffuser pump is based on the diffuser
element’s direction dependent flow resistance [1-4]. The
basic unit of the pump is shown in Figure 1. It consists of
two diffuser elements connected to a pump chamber with an
oscillating diaphragm. In the figure, the diffuser elements
are connected in series with flow channels. During the
supply mode, more fluid flows through the inlet element
than through the outlet element and during the pump mode
more fluid flows through the outlet element than through the
inlet element. The result is a net flow from the inlet side to
the outlet side.
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A simple analytic model has been developed [2] that

estimates the resonance frequency of the pump where the
diaphragm is the spring and the mass is fluid in the diffuser
elements. The continuity equation was used to formulate an
approximate expression for the volume flow. The latter was
recently further extended to include the pressure behavior
[5], but without including inertial effects and consequently
the relation between the geometry and the resonance
frequency was not considered.

To further optimize the valveless diffuser pump a better
model is necessary. The common way to model

micropumps is to use lumped-mass models, i.e., the
structure is divided into lumped mass elements. These
elements can be described individually by simple analytic
models and simple relations can be formulated between the
individually elements [6]. This approach has been used in,
e.g., [7-10]. During this work a lumped-mass model is
developed especially for the valve-less diffuser pump. The
model is verified using experimental results for different
pumps [1, 2, 4] and new designs are suggested.
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The model is formulated based on the unit shown in Figure
1. The inlet and outlet pressures are assumed constant. The
model includes stiffness, masses and viscous losses and is
able to handle nonlinearities. The following description is a
summary of what is extensively described in [11, 12].

An equation for the diaphragm is formulated using
Newton’s second law. For the previously tested liquid
pumps [1-4] the mass of the diaphragm is negligible
compared with the other masses in the system. The equation
for the diaphragm can then be written as
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where 
GLD

�  is the volume change due to deflection of the

diaphragm, 
GLD

��  is ����
GLD

, � is the time, �  is the chamber

pressure and �  is the electric field strength across the
piezoelectric disc used for the actuation.

The conservation of mass law [13] is used on the
chamber volume. Assuming a stiff chamber and that the
chamber volume, 

FK
� , is much larger than � , the

equation can be expressed as
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where 
Q

Φ  and 
RXW

Φ  are the flows through inlet and outlet,

LQ
�  and 

RXW
�  is the pressure at inlet and outlet, liquidκ  is the

compressibility of the liquid which is assumed constant, 0�

is the pressure outside the chamber and � is the relative gas
content (

FKJDV
�� ) in the chamber at the pressure 0� . The

gas is assumed ideal.
A flow channel of arbitrary shape can be analyzed using

the energy equation for a fixed control volume. For a
channel, where the flow, Φ , can be assumed one-



dimensional and for which the cross-sectional areas and
velocity profiles at inlet and outlet are the same, the
equation can be written

ORVVRXWLQ
��� ∆+Φ⋅+= �ρα (3)

there α  depends on the velocity profile and loss�∆  is the

pressure drop due to viscous losses. For a channel with the
constant cross-sectional area, �, and the length �� a flat flow
profile gives ��=α . This differs from that for a turbulent

flow profile with only 2 percent.
The diaphragm mass is negligible compared to the mass

in the diffuser elements and the mass inside the chamber are
also neglected. The resulting equation system is illustrated
as an electric circuit in Figure 2. It was solved using
MATLAB®. The model can easily be extended for other
configurations including more chambers, buffer elements
and flow channels.

The flow losses in the diffuser elements are based on
results from steady flow measurements fitted to polynomial
using a least square fit of coefficients 1� , 2� , 3�  and 4�  in

the expression for the pressure drop model�∆
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where Φ  is the flow. The losses for dynamic flow can be
expected to be different from steady flow [14]. To account
for this and other non-included effects two more
coefficients, �1 and �2, were added.

For other parts the flow losses, �∆ , are calculated using

the law of friction for laminar flow [14]

25.0
K

����� ⋅⋅⋅⋅=∆ η (5)

where �  is a parameter depending on the geometric shape,
�  is the channel length, η  is the viscosity, �  is the mean

velocity and the hydraulic diameter, �K, is calculated as
peimeter wettedArea4 ⋅=

K
� . For flow through a circular

cross-section, � can be determined analytically to be 64. For
rectangular cross-sections data are found in, e.g., [13].
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The model was implemented in MATLAB and tested for
several previously experimentally evaluated pumps [1, 2,
4]. Their dimensions are given in Table 1. All the pumps
have been tested using water as liquid. For all pumps the
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The flat-walled silicon pump

Diffuser width
The conical brass

pump (A) [1]
The conical brass

pump (B) [1]
The flat-walled
Brass pump [2]

80 µm [4] 40 µm (not tested) 20 µm(not tested)
Chamber radius [mm] 9.5 9.5 6.5 3.0 3.0 3.0
Diaphragm thickness [mm] 0.2 0.2 0.35 0.42 0.42 0.42
PZT disc radius/thickness [mm] 8.0/0.2 8.0/0.2 5.0/0.2 1.9/0.2 1.9/0.2 1.9/0.2
Depth [µm] §���� §���� 300 80 40 20
Diffuser element throat
diameter/width [µm]

230 530 300 80 40 20

Diffuser element outlet
diameter/width [mm]

0.60 1.10 1.00 0.267 0.133 0.067

Length diffuser [mm] 4.0 3.0 4.1 1.093 0.547 0.273
Channel diameter/width[mm] 2.80 2.80 3.0 2.0 2.0 2.0
Channel length [mm] 2.0 2.0 10 3.6 3.6 3.6
�9��S�����

-17 4910 4910 390 3.12 3.12 3.12
�9��(�����

-18 1110 1110 290 2.22 2.22 2.22
Measured frequency [Hz] 110 310 540 3350 - -
Calculated frequency [Hz] [2] 165 392 734 4238 2997 2119
Simulated frequency [Hz] 160 350 600 3500 2650 1619
Cdiffuser = C1; Cnozzle = C2 1; 1 0.6; 1 0.8; 1.2 0.5; 1.6 0.5; 1.6 0.5; 1.6



diaphragm properties were calculated using a finite element
program (ANSYS). The values used for the simulations are
given in Table 1. All experiments were done using a square
wave voltage for excitation. For the numerical simulations,
this will cause difficulties with ����  and instead a

sinusoidal signal was assumed. This should not significantly
affect the results since the pumps are operated at their
resonance frequencies.
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The simulations were done in the order that first the
frequency for maximum volume flow was determined. Then
the excitation level and the coefficients 1�  and 2�  were

adjusted to fit the measured volume flow and pressure head.
The procedure was repeated until the result was satisfying.
The differences between the simulated and measured
resonance frequencies can be explained by the differences
in the real velocity profile compared with the flat profile
used in simulations. All simulations were done assuming an
air content of 10 ppm in the chamber liquid [15].

The flow-pressure characteristics for the conical brass
pump and the flat-walled brass pump show similar behavior.

For the latter, it is shown in Figure 3. The simulations were
done using the simple model and the simulated flow was
doubled to correspond to a double chamber pump. The
excitation levels were chosen to correspond to the measured
volume flow and then the lines were calculated for a
number of points. The simulations show that there is a
difference between the calculated and measured diaphragm
amplitudes. Tests showed that this probably mainly was
dependent on problems with the measurement equipment.

The simulated absolute pump chamber pressure is
shown in Figure 4 for the flat-walled brass pump. The
chamber pressure goes towards zero at the maximum
excitation level. The calculated minimum chamber pressure
is about 0.6 kPa. Compared with the vapor pressure for
water of approximate 2.3 kPa at 20ºC this indicates that low
chamber pressure limits the pump performance [16].

Figure 5 shows plots of the volume flow and pressure
head versus the frequency for the same excitation level (80
V p-p for the measurements). The simulated frequency
behavior is very similar to the measured. Simulation of the
volume flow and pressure head versus the diaphragm
amplitude also showed behavior very similar to the
measurements. For the flow the relation is linear and for the
pressure it is a second degree polynomial.

The flat-walled silicon pump presented in [4] is
simulated using a single chamber model. The result is
shown in Figure 6 together with measured values. The
figure also shows simulations for several other
configurations: a serial pump operated in in-phase and anti-
phase mode and pumps with the diffuser element
dimensions scaled down to 40×40 µm2 and 20×20 µm2

throat cross-section. The chamber depth is equal to the
diffuser depth. The stationary flow-pressure characteristics
were assumed to scale as between the flat-walled brass
pump and the flat-walled silicon pump.
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The calculations for a pump using deposited PZT was
based on the design of the pump with 40×40 µm cross-
section described above. The diaphragm properties were



calculated using approximate analytic formulas for the
deflection of a plate under thermal load [17] with the
thermal expansion coefficient, γ, replaced with the
piezoelectric charge constant, 31� . The PZT was assumed

to have a Young’s modules of 60 MPa, Poisons ratio of 0.3
and �31=-70pm/V. For silicon 150 MPa was used for
Young’s modules and 0.17 for Poisons ratio. The simulated
pump performances are shown in Figure 7 with the chamber
radius equal to the diaphragm radius. An electric field
strength of 500 V/mm was used. The simulations indicate
that such pumps should work. It is probably possible to
fabricate a working pump using a PZT thickness of only
10 µm. The excitation level is limited of the allowed
electric field strength. The piezoelectric charge constant,
�31, should be as high as possible. The assumed -70 pm/V is
significantly lower than -200 pm/V for the piezoelectric
ceramic PXE5 from Philips Components. The simulations
in Figure 7 shows the best performance for the pump with a
100 µm thick silicon diaphragm almost completely covered
by deposited PZT.
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The presented lumped-mass model describes the valve-less
diffuser pump satisfactory and is useful improve the design.
The results indicate that low chamber pressure limits the
maximum excitation level. The pressure head can be
increased by using a pump with two serial connected
chambers operated in anti-phase. The pressure head can
probably be further increased by scaling down the diffuser
elements dimensions. The performance is highly dependent
on flow-pressure characteristics of the diffuser elements and
they need to be optimized to optimize the pump.

The study indicates that deposited PZT probably can be
used for actuation of the pump. A working pump can be
achieved for a 10 µm thick PZT layer. The geometry for the
diaphragm and the PZT is important. This is seen in Figure
7 where a 30 µm thick diaphragm almost completely
covered with 10 µm thick PZT gives the same pump
performance as a 100 µm thick diaphragm partly covered
with 100 µm thick PZT. Further, the piezoelectric charge
constant, �31, should be as high as possible. The excitation
level is limited of the allowed electric field strength.
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