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ABSTRACT

The mass 
ow rate of a rare�ed gas through a long

rectangular channel caused by both pressure and tem-

perature di�erences has been calculated applying the

S model kinetic equation. The calculations have been

carried out in the wide ranges of the four parameters

determining the solution of the problem: the gas rar-

efaction, the height-to-width ratio of the channel, the

pressure ratio on the channel ends and the analogous

temperature ratio. First, the Poiseuille 
ow and the

thermal creep have been calculated as a function of the

local rarefaction parameter assuming the pressure and

the temperature gradients to be small. Then, the total

mass 
ow rate has been calculated for the temperature

ratio equal to 3.8 and for two values of the pressure ra-

tio: 1 and 100.
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INTRODUCTION

For further perfection of micro
uidics it is neces-

sary to develop precise numerical methods of calcula-

tion of 
uid 
ows through microchannels of di�erent

forms. Since the size of the microsystems has the or-

der of the molecular mean free path, the continuum me-

chanics equations are not applicable to such type of the


ows. To take into account the gas rarefaction the 
ows

must be calculated by the methods of the rare�ed gas

dynamics [1]{[5]. This approach allows us to regard the

whole range of the gas rarefaction from the free molec-

ular (collisionless) regime to the hydrodynamic (contin-

uum) regime.

There are some speci�c phenomena in rare�ed gases

that disappear in the continuous medium limit. One of

them is the so-called thermal creep, i.e. the gas 
ows

caused by a temperature gradient. This phenomenon

can be signi�cant and must be taken into account in

practical calculations.

From the viewpoint of non-equilibrium thermody-

namics [6] the thermal creep is a cross e�ect. It should

be noted that many cross e�ects arising in rare�ed gases

and pointed out in the papers [7] must be taken into ac-

count in calculations of micro
uidics. Moreover, many

of these phenomena can be used to create new types of

micro
uidics such as pumps, valves etc.

Many elements of microsystems have a rectangular

cross section, as is shown in Fig. 1. To calculate the

mass 
ow rate through a channel of arbitrary length `

and width b one has to consider the three-dimensional

rare�ed gas 
ow. Because of great numerical diÆculties

this problem was not solved yet in the wide range of the

gas rarefaction.

If we assume the channel length to be essentially

larger than its width and height, i.e. ` � a and ` � b,

the end e�ects can be neglected. In this case the 
ow

becomes two-dimensional and the problem can be solved

by modest computational e�orts. Some data on such gas


ow are available in the papers [8], [9], where the Bhat-

nagar Gross Krook model equation [10] was applied. An

analysis made in the review [5] shows that this equation

is not appropriate for non-isothermal rare�ed gas 
ows.

The paper [11] also contains data on the unsteady slip


ow through a long rectangular channel. But there are

no data on the mass 
ow rate.

The aim of the present work is to calculate the mass


ow rate through a long rectangular channel caused by

both pressure and temperature gradients over the wide

ranges of the gas rarefaction and the ratio a=b.

Consider a channel created by two parallel plates

�xed at y0 = �a=2 and two more parallel plates placed

at z0 = �b=2 as shown in Fig. 1. Without loss the gen-

erality we consider that a � b. Moreover, we assume the

channel length ` to be essentially larger than its width,

i.e. `� b. The channel connects two reservoirs contain-

ing the same gas. The pressure P1 and the temperature

T1 are maintained in the left reservoir, while the other

values of the pressure P2 and the temperature T2 are

maintained in the right one. We are going to calculate

the mass 
ow rate _M , which is de�ned as the quantity

of mass passing through a cross section of the channel

per unity of time.

The solution of the problem is determined by the fol-

lowing parameters: the pressure ratio P2=P1, the tem-

perature ratio T2=T1, the height-to-width ratio a=b, and

the rarefaction parameter (inverse Knudsen number) de-

�ned as

Æ =

p
�

2

a

�
: (1)
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Figure 1: Sketch of the channel and coordinates

Here, � is the molecular mean free path, which can be

calculated via the shear viscosity � as

� =
�

P

�
�kT

2m

�1=2

; (2)

where m is the molecular mass, and k is the Boltzmann

constant. Substituting (2) into (1) the rarefaction pa-

rameter is calculated directly via the pressure P , the

temperature T and the viscosity as

Æ =
aP

�

� m

2kT

�1=2
: (3)

If the dependence of the viscosity on the temperature

� = �(T ) is known, it can be said that the rarefaction

parameter Æ is determined by the pressure and temper-

ature only, i.e. Æ = Æ(P; T ).

It was shown [12], [13] that in a long channel the local

pressure and temperature gradients are always small at

any ratios P2=P1 and T2=T1. Thus, the solution of the

problem can be divided on two stages:

In the �rst stage we assume the local pressure and

temperature gradients to be small, i.e.

� =
a

P

dP

dx0
; j�j � 1; � =

a

T

dT

dx0
; j� j � 1: (4)

This allows us to linearize the kinetic equation and to

calculate the dimensionless 
ow rate Q through a cross

section de�ned as

Q =
1

a bP

�
2kT

m

�1=2

_M; (5)

where P = P (x0) is the local pressure in the cross section

and T = T (x0) is the local temperature in the same

section. Since the pressure and temperature gradients

are small the reduced 
ow rate can be decomposed as

Q = �QP � +QT �; (6)

where the positive coeÆcients QP and QT do not de-

pend on the gradients � and � . The �rst coeÆcient QP
describes the gas 
ow caused by the pressure gradient.

This is the so-called Poiseuille 
ow. The second coef-

�cient QT corresponds to the gas 
ow caused by the

temperature gradient, i.e. the thermal creep.

Finally, the �rst stage of the problem provides the

values of these coeÆcients as a function of the ratio a=b

and of the local rarefaction parameter Æ calculated via

P (x0) and T (x0) by (3).

To realize the second stage we need to introduce the

other reduced 
ow rate as

G =
`

a2 b P1

�
2kT1

m

�1=2

_M: (7)

Unlike Q, this reduced 
ow rate does not depend on the

local rarefaction parameter Æ(x0), but it is determined

by the ratios a=b, P2=P1, T2=T1 and by the rarefaction

parameter Æ1 corresponding to the pressure P1 and the

temperature T1. The coeÆcient G will be calculated

below via the coeÆcients QP and QT.

INPUT EQUATION

To calculate the coeÆcients QP and QT the linearized

Boltzmann equation should be solved. This equation

provides reliable numerical data but requires great com-

putational e�orts. Although, nowadyas it is possible to

calculate two-dimensional 
ows using the exact Boltz-

mann equation, the model kinetic equations continue to

be good tools for practical calculations, because they al-

low us to reduce essentially the computational e�orts.

The problem is only to apply an appropriate model

equation.

An analysis made in the review [5] shows that for

non-isothermal 
ows of rare�ed gases the S model [14]

is suitable. In case of stationary 
ow it reads

v
@f

@r0
=

P

�

�
fM

�
1 +

2mq
0
V

15PkT

�
mV 2

2kT
� 5

2

��
� f

�
; (8)

where f(r0;v) is the velocity distribution function, fM

is the local Maxwellian, V = v � u
0, v is the molecular

velocity, r0 is the position vector, u0 is the bulk (hydro-

dynamic) velocity, and q
0 is the heat 
ow vector. The

bulk velocity u
0 and the heat 
ow vector q0 are calcu-

lated via the distribution function f(r0;v).

It must be noted that the distribution function f(r0;v)

does not consider the internal structure of molecules

and describes a state of monoatomic gas. To calculate



Table 1: Poiseuille 
ow QP vs Æ and a=b

QP
Æ a=b = 1 a=b = 0:1 a=b = 0:05 a=b = 0

0 0.8387 1.991 2.373 1
0.001 0.8371 1.978 2.344 4.273

0.01 0.8313 1.910 2.218 3.050

0.02 0.8255 1.860 2.132 2.713

0.05 0.8115 1.763 1.975 2.306

0.1 0.7959 1.671 1.832 2.038

0.2 0.7794 1.573 1.688 1.823

0.5 0.7663 1.465 1.537 1.613

1. 0.7739 1.437 1.493 1.549

2. 0.8175 1.505 1.556 1.606

5. 0.9950 1.882 1.941 2.000

10. 1.323 2.609 2.690 2.772

20. 2.006 4.129 4.262 4.393

40. 3.395 7.214 7.451 7.695

a polyatomic gas 
ow one has to introduce additional

variables of the distribution function and to apply an

appropriate kinetic equation.

For further derivations it is convenient to introduce

the following dimensionless quantities

r =
r
0

a
; c = �v; u = �u0x; q =

�

P
q0x;

where � =
p
m=2kT : Here, we assume the bulk velocity

and the heat 
ow vector to have the x-component only,

that is why the subscript x is omitted in the dimension-

less notations u and q.

To linearize the S model (8) the distribution function

is presented as

f(r; c) = f0
�
1 + h(y; z; c) + �x +

�
c2 � 5

2

�
�x

�
; (9)

where f0 is the absolute Maxwellian. Substituting (9)

into (8) we obtain the linearized S model.

Because of the smallness of the gradients � and �

the solution of the linearized S model can be split in

two parts

h = hP � + hT �: (10)

The distribution function moments can be also split as

u = uP � + uT �; q = qP � + qT �:

Then, the coeÆcients QP and QT are expressed as

QP = �2
a

b

Z b=2a

�b=2a

Z
1=2

�1=2

uP(y; z) dy dz; (11)

QT = 2
a

b

Z b=2a

�b=2a

Z
1=2

�1=2

uT(y; z) dy dz: (12)

Table 2: Thermal creep QT vs Æ and a=b

QT
Æ a=b = 1 a=b = 0:1 a=b = 0:05 a=b = 0

0 0.4193 0.9955 1.186 1
0.001 0.4181 0.9839 1.162 1.855

0.01 0.4110 0.9165 1.044 1.246

0.02 0.4037 0.8658 0.9662 1.078

0.05 0.3857 0.7695 0.8291 0.8719

0.1 0.3637 0.6763 0.7089 0.7320

0.2 0.3390 0.5814 0.5968 0.6105

0.5 0.2953 0.4490 0.4553 0.4620

1. 0.2545 0.3553 0.3593 0.3633

2. 0.2070 0.2667 0.2693 0.2719

5. 0.1366 0.1598 0.1609 0.1621

10. 0.0868 0.0956 0.0961 0.0966

20. 0.0495 0.0522 0.0524 0.0526

40. 0.0263 0.0269 0.0270 0.0270

Thus, the linearized S model is decomposed on the

two independent equations. The solution of the �rst of

them hP provides the coeÆcient QP and the solution of

the second one hT gives the coeÆcient QT. However,

the Onsager relation [7] allows us to substitute uT by qP
in (12). So, to calculate both coeÆcients QP and QT it

is enough to solve only the �rst equation.

The S model equation with the di�use boundary con-

dition has been solved by the optimized discrete velocity

method [15].

NUMERICAL RESULTS

The numerical calculations have been performed for

three values of the ratio a=b=1; 0.1; 0.05. The numerical

values of the coeÆcients QP and QT are given in Tables

1 and 2, respectively.

It should be noted that according to the analysis

made in the review [5] the in
uence of the internal molec-

ular structure on the coeÆcient QP is very weak, while

the coeÆcient QT essentially depends on the molecular

structure. So, the data given in Table 1 are applicable

to any polyatomic gas, but the coeÆcient QT must be

recalculated for every speci�c polyatomic gas.

Some words should be said about the lateral wall in-


uence on the coeÆcients QP and QT. For the small

values of the rarefaction parameter Æ this in
uence con-

tinue to be large even if the ratio a=b is small. From

Table 1 one can see that for Æ = 0:001 the di�erence of

the Poiseuille 
ow QP at a=b = 0:05 and at a=b = 0 is

about 80% instead of the expected value 5%. The same

can be said on the thermal creep QT. For the large val-

ues of Æ the lateral wall in
uence becomes small even

for rather large values of the ratio a=b. One can see

that for Æ = 40 the di�erence of the coeÆcient QT at



Table 3: Reduced 
ow rate G vs Æ1 and a=b at P2=P1=1

G

Æ1 a=b = 1 a=b = 0:1 a=b = 0:05

0.001 0.4087 0.9702 1.1563

0.01 0.4033 0.9187 1.0618

0.1 0.3694 0.7262 0.7805

1. 0.2718 0.4090 0.4158

10. 0.1151 0.1354 0.1364

100. 0.0187 0.0190 0.0191

a=b = 0:1 and at a=b = 0 is less than 1% instead of the

expected di�erence 10%. So, the lateral wall in
uence

on the Poiseuille 
ow QP and on the thermal creep QT
essentially depends on the rarefaction parameter Æ.

With help of (4)-(7) we obtain the di�erential equa-

tion analogous that derived in the work [16] for the cir-

cular capillary

1

P1

dP

dx
=

1

QP

"
QT

P

P1T

dT

dx
� a

`

�
T

T1

�1=2

G

#
: (13)

The unknown function of the equation is the pressure

P = P (x), which must satisfy the boundary condition

P (�`=2a) = P1. The quantity G is a parameter of the

equation and we must �t G so the pressure P (x) would

be equal to P2 at x = `=2a.

The di�erential equation (13) was solved by the �nite

di�erence method. The only value of the temperature

ratio has been considered, T2=T1 = 3:8, which corre-

sponds to the situation when one reservoir is placed in

liquid nitrogen (T1 = 77:2 K) and the other one is main-

tained at the room temperature (T2 = 293 K).

Two values have been taken for the pressure ratio:

P2=P1=1 and P2=P1=100. The �rst value of the pres-

sure ratio corresponds to the situation when there is no

the pressure di�erence between the reservoirs and the

gas 
ow is caused only by the temperature di�erence.

The numerical results of this 
ow are given in Table 3.

One can see that: (i) the reduced mass 
ow G is posi-

tive, i.e. the gas 
ows from the left ("cold") reservoirs to

the right ("hot") one; (ii) the mass 
ow rate G decreases

with the increasing rarefaction parameter Æ1.

The second value of the pressure ratio P2=P1 = 100

corresponds to the situation of large pressure di�erence.

The behavior of the reduced 
ow rate G completely dif-

fers from that obtained for P2=P1 = 1: (i) it is negative,

i.e. the gas 
ows from the right reservoirs to the left

one; (ii) the quantity G increases with the increasing

rarefaction parameter Æ1.

Since Eq.(13) contains the coeÆcient QT strongly de-

pending on the internal molecular structure, the data

given in Tables 3 and 4 are valid only for monoatomic

gases.

Table 4: Reduced 
ow rate G vs Æ1 and a=b at

P2=P1=100

�G
Æ1 a=b = 1 a=b = 0:1 a=b = 0:05

0.001 41.88 96.37 111.9

0.01 40.97 87.14 95.45

0.1 46.16 89.16 92.66

1. 125.2 259.1 268.3

10. 939.6 2070. 2138.

100. 9094. 20190. 20860.
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