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ABSTRACT

In this study, we seek to develop a low power, area efficient wavelet
compression chip capable of reconstructing sharp images at
acceptable noise levels.  It can be used in conjunction with such
devices as the 256 x 256 CMOS Active Pixel Sensor (APS) camera
under developed at JPL [1], or because of its small size, incorporated
on the image sensor itself. A software algorithm is used to simulate
the hardware and yield predicted values prior to fabrication. We limit
our focus to the two-coefficient Haar Wavelet and one level Subband
Coding (SBC).  These parameters allow us to best emulate hardware
restrictions in software.  As a result, the software algorithm should
yield very close findings to those of the hardware.  Zerotree
Encoding, which is a less restrictive algorithm, is employed as a
standard. Reported results from Zerotree Encoding for 8:1
compression of the 512 x 512 standard Lena image yield a Peak
Signal-to-Noise Ratio (PSNR) of 43.3 dB.  Our software results for
8:1 compression of the 256 x 256 Lena image yield a PSNR of 37 dB,
which is quite good given the more restrictive nature of our
algorithm.

Keywords: wavelet transform, CMOS APS camera, low power,
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INTRODUCTION

Historically, image-processing methodologies have traditionally used
the Discrete Cosine Transform (DCT) to accomplish synthesis and
compression. However, recent efforts, including those of Watkins
[2], Murenzi [3], and Namuduri [4] have shown that wavelet
transform algorithms (continuous and discrete) may provide
significant improvements over previously used algorithms.  The
software and hardware implementations used in this study are based
on the use of the 2-coefficient Haar Wavelet and one level Subband
Coding (SBC) [5].  This particular algorithm was chosen, because it
is easily and accurately implemented in hardware.  Zerotree
Encoding, which is a less restrictive algorithm, utilizes the 9-
coefficient Haar Wavelet and multi level SBC [6].  The Zerotree
Encoding algorithm for 8:1 compression of the 512 x 512 Lena image
yields a PSNR of 43.3 dB.  In this effort the 256 x 256 Lena image,
at 8:1, 4:1, and 2:1 compression ratios yield a PSNR of 37 dB, 37.3
dB, and 39 dB, respectively.   Hence, the 2-coefficient Haar Wavelet
and 1-level SBC compares favorably with other less restrictive
algorithms.  The chip is being designed for implementation in a
NASA-JPL Active Pixel Sensor camera for image compression.
Although it is not required for the chip to achieve very large
compression ratios, minimum errors due to compression must be
addressed.  The results obtained from the software simulation reflect
the probability that the proposed chip can indeed produce the
necessary sharply reconstructed images with minimum errors in

spite of the many restrictions introduced by the hardware.
Ultimately, the completed prototype must undergo tests to measure
performance and design efficiency.  Our approach requires that such
standard measurement tools as Root Mean Squared Error (RMSE)
and Peak Signal-to-Noise Ratio1 (PSNR) be used. The software
algorithm will provide standard values that we can use to measure
the performance and design efficiency of the chip.

Discrete Wavelet Transform (Software)

The Discrete Wavelet Transform has been implemented using
Matlab.  This implementation, shown in Figure 1 is based on
Mallat’s Standard Wavelet Transform Algorithm [5]. Mallat’s
algorithm uses quadrature mirror filters to provide wavelet analysis
of an image.  Large-scale analysis of the image is captured in the low
frequency filtering, while small-scale analysis is captured in the high
frequency filtering.  The 2-coefficient Haar Wavelet consisting of
both a lowpass filter [1 1] and a highpass filter [-1 1] is the preferred
wavelet for this study because it can be readily implemented in
hardware.  The convolved lowpass filter and image produces the
approximate or averaged coefficients while the convolved highpass
filter and image produces detailed coefficients. The highpass and
lowpass filters are called the decomposition filters because they
break the image down or decompose the image into detailed and
averaged coefficients, respectively.  Similarly, the reconstruction
lowpass and highpass filters  [1 1] and [-1 1] respectively, can be
used to rebuild the original image or to construct the wavelet
function.  The Matlab programming environment provided all the
necessary tools needed to produce a menu driven software
application.  The image is read in as a 256 x 256 matrix and each row
is convolved with a lowpass filter. The results are then stored in
temporary matrix 1.  The original image is then convolved with a
highpass filter and stored in temporary matrix 2.  Next, the columns
of temporary matrices 1 and 2 are downsampled and stored into
temporary matrices 3 and 4, respectively.  The next step involves
convolving the columns of temporary matrix 3 with lowpass and
highpass filters, then storing the results into matrices 5 and 6,
respectively.  At this point, the columns of temporary matrix 4 are
also convolved with lowpass and highpass filters.  The results are
stored in temporary matrices 7 and 8, respectively.  Finally, the
rows of temporary matrices 5-8 are downsampled and stored as
subbands Lowpass Lowpass, Lowpass Highpass, Highpass
Lowpass and Highpass Highpass, respectively.  This procedure
defines 1-Level Subband Coding using Mallat’s Algorithm.  These
four subbands can be recombined to produce the original image if and
only if none of the subbands are quantized.  There exist many
different types of quantization schemes, each with its own
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characteristics and complexity.  Unfortunately, hardware limitations
restrict the allowable quantization schemes.

Discrete Wavelet Transform (Hardware )

Performing on-chip data reduction operations on the image sensor
itself reduces the amount of power required for transmitting the data
off-chip as well as subsequent hardware resources in the overall
system. In our study we have developed a low power area efficient
approach capable of being incorporated on the image sensor itself.
Hardware implementation can be accomplished using essentially the
same principles as the software implementation.  However, a more
efficient storage scheme is required to perform the operations
accurately utilizing a reasonable amount of chip area..  In our study
we assume a one-chip solution based on CMOS APS imager
technology.  Our approach could however be realized as a support
chip and used in conjunction with a non-CMOS image sensor such as
a CCD.

There are two parts to the chip, the imager array and wavelet
compression module.  The imager captures the image, and serves as
input into the wavelet compression module.  The pixels within the
imager each contain an amplifier that converts the photo-generated
charge at the sense node into a linearly proportional voltage.  The
amplifier in each pixel is connected through a switch onto a column
bus. When the switch is closed, the detected voltage value is sampled
onto a capacitor located at the bottom of the imager array.  An entire
row of image data can be obtained by broadcasting this control signal
to all pixels in a given row of the imager.  In this case there would
have to be a column bus for every column of pixels in the imager and
an equal number of capacitors located underneath the imager.  In our
approach we assume that there are two column buses for every
column of pixels.  In this way two rows of pixels can be read out
simultaneously in the same amount of time.  This approach reduces
power since the power required for settling analog signal scales
quadratically with the inverse of settling time. In our approach we
assume that there are N/2 wavelet compression sub-modules located
under the imager array. Each of these sub-modules reads in individual
2 x 2 matrices taken from the pixels, stores this data, and applies the
appropriate lowpass and highpass filter operations.  With this
approach the downsampling and convolution (see Figure 2) are
performed simultaneously.  Thus the storage requirements for the
convolution of the filters and the image is reduced from length1 +
length2 - 1 elements to simply four results.  Length1 and length2 are
variables representing the number of elements in the two vectors to
be convoluted.  Although the wavelet transform is expressed in terms
of lowpass and highpass filters, it could as easily have been
presented in terms of averaging and differencing, which is the
cornerstone of this hardware implementation. Thus, the operations
previously implemented using software should readily be attainable
using hardware.  We will focus mainly on the lowpass lowpass
subband of a 2 x 2-pixel array in our initial phase of producing the
chip (see Figure 3a).  However, by repeating the lowpass lowpass
module, all four subbands can easily be produced for an N x N image,
where N is the desired dimension of the picture to be compressed
(see Figure 3b).  It is evident from Figure 3b that the only difference
between the Lowpass Lowpass module and the other subband

modules is that the “r” (reference level) and “s” (signal level) values
are in different locations, and placing the “r” and “s” values in
different locations simply allow the difference coefficients to be
produced.  The left and right hand sides are composed of an array of
“r” and “s” values, respectively in Figure 3a.  The parameter “r”
represents the reference level of the pixel or the initial charge stored
in the pixel while s corresponds to the pixel signal plus the reference
level.  To get the value of the true signal taken from the pixel array,
the difference “r-s” must be performed.  By convention, in Figure 3a
or Figure 3b the bus on the left-hand side is considered positive,
while the bus on the right hand side is considered negative.  This
convention will be important when the values are routed off-chip to
the differencing operational amplifier.  In addition, Figure 3b contains
calculations that the differencing operational amplifier will be
performing to produce values for Lowpass Lowpass, Highpass
Highpass and the rest of the Subband Coding modules.  The
capacitors are responsible for performing all on-chip arithmetic
operations.  Each of the capacitors in Figures 3a and 3b will be
assigned the same capacitance to add proper weighting to the wavelet
coefficients, as there exists a direct relationship between the
capacitance and wavelet coefficients.  Recall that in the 2-coefficient
Haar, each coefficient has the same magnitude, thus each capacitor
should have the same capacitance. In Figure 3a, the average of each
array can be obtained by placing the four capacitors in parallel. The
following relation between, q, c, and V illustrate this point. In
equation (1), we formulate the general relation between q, c, and V

q cV≡ , (1)

in which the parameters q, c, and V correspond to the charge,
capacitance and voltage, respectively.  If two capacitors with the
same capacitance C are connected in parallel, the result is

Q Q CV1 2 2+ ≡ . (2)

Equation (2) reflects charge conservation and capacitance doubling.
As a result, the average voltage of two capacitors can be represented
by

( )V Q Q C≡ +1 2 2/ .     (3)

If these averages are routed onto bus lines and then off chip to a
differencing operational amplifier, then the necessary addition and
subtraction can be done.  An example of this case is shown in Figure
3a. In theory other filters can be realized by using more capacitors
and by scaling the capacitors, but both require more area.   From a
hardware standpoint, the 2-coefficient Haar wavelet lends itself to an
area efficient implementation, because of its small number of taps,
and also because the taps themselves are equal in size. To achieve a
filter where one coefficient is ten times larger than another requires
that one capacitor be ten times larger than another. When one
considers the precision of the coefficients necessary for many image
compression filters, the area required to realize them becomes
prohibitive.

RESULTS AND DISCUSSION

The circuit in Figure 4 simulates the Lowpass Lowpass module
mentioned in the above section.  Basically the circuit takes voltages
from the pixel array and averages them.  The pixel arrays are
simulated using voltage sources connected to switches that allow the



pixel arrays to simply charge the capacitors.  Each transistor has a
gate voltage that marks the highest value that the circuit can average
correctly.  SPICE data was taken using the circuit in Figure 4 and the
test image in matrix 1.
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Matrix 1, which corresponds to the test image, generates the image in
Figure 5.  The test matrix is fed into the software algorithm and the
result is the production of four subbands, among which is the
lowpass lowpass subband, i.e., the average coefficients as shown
below in Matrix 2, which contains the theoretical values.
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The same test matrix is fed into the circuit in Figure 4, yielding the
results in Matrix 3, which contains the experimental values.



















0.05.00.15.0

0.00.15.15.0

0.00.10.10.0

0.05.05.00.0

(Matrix 3)

It is noted that these values are exactly half of the software values
due to the circuit scaling of ¼ and software scaling of ½.  Therefore,
the two matrices only differ by a constant, which is exactly the
predicted outcome. Thus, the theoretical and experimental values
agree within a constant.

CONCLUSION

We have presented a low power, area efficient implementation of the
two taps Haar wavelet compression algorithm. Our results show that
the results obtained with software simulations can effectively be
implemented in hardware.  The theoretical values produced from the
software implementation differ only by a constant from those taken
from the circuit simulation.  Results suggest that an algorithm
capable of 8:1, 4:1, and 2:1 compression with error measurements of
37 dB, 37.3 dB, and 39 dB, respectively can effectively be used to
develop a functional hardware prototype.  Although the hardware
limitations restrict the software implementation; the results compare
favorably to those of other unrestricted software algorithms. The
circuit was simulated using MicroSim, and the layout is being

implemented using Tanner Tools Pro Suite.  Currently, the chip is in
the secondary design phase.  Future efforts will be directed towards
completing the layout of the chip and submitting it to MOSIS for
fabrication.
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