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ABSTRACT

In this study, we seek to develop alow power, area efficient wavdet
compresson chip capable of recondructing sharp imeges a
acceptable noise levels. It can be used in conjunction with such
devices as the 256 x 256 CMOS Active Pixd Sensor (APS) camera
under developed at JPL [1], or because of its small size, incorporated
on the image sensor itsdf. A software dgorithm is used to smulate
the hardware and yield predicted vaues prior to fabrication. We limit
our focus to the two-coefficient Haar Wavelet and one level Subband
Coding (SBC). These parameters dlow usto best emulate hardware
restrictions in software.  As a reault, the software agorithm should
yield very cdose findings to those of the hardware. Zerotree
Encoding, which is a less redtrictive dgorithm, is employed as a
sandard. Reported results from Zerotree Encoding for 8.1
compression of the 512 x 512 standard Lena image yield a Pegk
Signd-to-Noise Ratio (PSNR) of 43.3 dB. Our software results for
8:1 compression of the 256 x 256 Lenaimage yield aPSNR of 37 dB,
which is quite good given the more redrictive nature of our
dgorithm.
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INTRODUCTION

Historically, image-processing methodol ogies have traditionaly used
the Discrete Cosine Transform (DCT) to accomplish synthesis and
compression. However, recent efforts, including those of Watkins
[2], Murenzi B], ard Namuduri [4] have shown that wavelet
trandform agorithms (continuous and discrete) may provide
dgnificant improvements over previoudy used dgorithms. The
software and hardware implementations used in this sudy are based
on the use of the 2-coefficient Haar Wavelet and one level Subband
Coding (SBC) [5]. This particular dgorithm was chosen, because it
is eadly and accuratdy implemented in hardware.  Zerotree
Encoding, which is a less redtrictive agorithm, utilizes the 9-
coefficient Haar Wavelet and multi levd SBC B]. The Zerotree
Encoding agorithm for 8:1 compression of the 512 x 512 Lenaimage
yiddsaPSNR of 43.3 dB. In this effort the 256 x 256 Lenaimage,
a 81, 4.1, and 2:1 compression ratios yield a PSNR of 37 dB, 37.3
dB, and 39 dB, respectively. Hence, the 2-coefficient Haar Wavelet
and 1-levd SBC compares favorably with other less redrictive
dgorithms.  The chip is being designed for implementetion in a
NASA-JPL Active Pixd Sensor camera for image compression.
Although it is not required for the chip to achieve very large
compression ratios, minimum errors due to compresson must be
addressed. The results obtained from the software Smulation reflect
the probability that the proposed chip can indeed produce the
necessary sharply recondructed images with minimum errors in

spite of the many redrictions introduced by the hardware.
Ultimately, the completed prototype must undergo tests to measure
performance and design efficiency. Our gpproach requires that such
sandard measurement tools as Root Mean Sguared Error (RMSE)
and Pesk Signd-to-Noise Ratio' (PSNR) be used. The software
agorithm will provide standard vaues that we can use to measure
the performance and design efficiency of the chip.

Discrete Wavelet Transform (Softwar €)

The Discrete Waveet Transform has been implemented using
Matlab. This implementation, shown in Figure 1 is based on
Mdlat's Standard Wavdet Transform Algorithm [5]. Mallat's
agorithm uses quadrature mirror filters to provide wavelet andysis
of animage. Large-scde andyds of theimage is cgptured in the low
frequency filtering, while small-scae andysis is captured in the high
frequency filtering. The 2-coefficient Haar Wavelet condsting of
both alowpassfilter [1 1] and ahighpassfilter [-1 1] isthe preferred
wavee for this study because it can be readily implemented in
hardware. The convolved lowpass filter and image produces the
goproximate or averaged coefficients while the convolved highpass
filter and image produces detailed coefficients. The highpass and
lowpeass filters are cdled the decomposition filters because they
bresk the image down or decompose the image into detailed and
averaged coefficients, respectively. Similarly, the recongtruction
lowpass and highpass filters [1 1] and [-1 1] respectively, can be
used to rebuild the origind image or to congruct the waveet
function. The Matlab programming environment provided dl the
necessty tools needed to produce a menu driven software
goplication. Theimageisread in asa 256 x 256 matrix and each row
is convolved with a lowpass filter. The results are then stored in
temporary matrix 1. The origind image is then convolved with a
highpass filter and stored in temporary matrix 2. Next, the columns
of temporary matrices 1 and 2 are downsampled and stored into
temporary matrices 3 and 4, repectively. The next step involves
convolving the columns of temporary matrix 3 with lowpass and
highpass filters, then storing the results into matrices 5 and 6,
respectively. At this point, the columns of temporary matrix 4 are
aso convolved with lowpass and highpass filters. The results are
stored in temporary matrices 7 and 8, respectively. Finaly, the
rows of temporary matrices 5-8 are downsampled and stored as
subbands Lowpass Lowpass, Lowpass Highpass, Highpass
Lowpass and Highpass Highpass, respectively. This procedure
defines 1-Level Subband Coding usng Mdlat's Algorithm. These
four subbands can be recombined to produce the origing image if and
only if none of the subbands are quantized. There exis many
different types of quantization schemes, each with its own
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characteristics and complexity. Unfortunately, hardware limitations
regtrict the dlowable quantization schemes.

Discrete Wavelet Transform (Hardware)

Performing on-chip data reduction operations on the image sensor
itself reduces the amount of power required for transmitting the data
off-chip as well as subsequent hardware resources in the overdl
system. In our study we have developed a low power area efficient
gpproach capable of being incorporated on the image sensor itsdlf.
Hardware implementation can be accomplished using essentidly the
same principles as the software implementation. However, a more
effident storage scheme is required to perform the operations
accurately utilizing a reasonable amount of chip area.. In our study
we assume a onechip solution based on CMOS APS imeger
technology . Our gpproach could however be realized as a support
chip and used in conjunction with anon-CMOS image sensor such as
aCCD.

There are two parts to the chip, the imeger aray and wavdet
compression module. The imager captures the image, and serves as
input into the wavelet compression module. The pixels within the
imeger each contain an amplifier that converts the photo-generated
charge at the sense node into a linearly proportiona voltage. The
amplifier in each pixd is connected through a switch onto a column
bus. When the switch is closed, the detected voltage value is sampled
onto acapacitor located at the bottom of theimager array. An entire
row of image data can be obtained by broadcesting this control signa
to dl pixdsin a given row of the imager. In this case there would
have to be a column bus for every column of pixelsin the imager and
an equa number of capacitors located undernegth the imager. In our
approach we assume that there are two column buses for every
column of pixds. In this way two rows of pixels can be read out
smultaneoudy in the same amount of time. This gpproach reduces
power since the power required for settling andog sgnd scaes
quadraticaly with the inverse of sdttling time. In our approach we
assume that there are N/2 wavelet compression sub-modules located
under theimager array. Each of these sub-modules reads in individua
2 x 2 matrices taken from the pixels, stores this data, and applies the
appropriate lowpass and highpass filter operations.  With this
approach the downsampling and convolution (see Fgure 2) ae
performed smultaneoudy. Thus the storage requirements for the
convolution of the filters and the image is reduced from lengthl +
length2 - 1 dementsto smply four results. Lengthl and length2 are
variables representing the number of eements in the two vectors to
be convoluted. Although the wavelet transform is expressed in terms
of lowpass and highpass filters, it could as easily have been
presented in terms of averaging and differencing, which is the
cornerstone of this hardware implementation. Thus, the operations
previoudy implemented using software should readily be attainable
usng hardware. We will focus mainly on the lowpass lowpass
subband of a2 x 2-pixd array in our initid phase of producing the
chip (see Figure 3a). However, by repeeting the lowpass lowpass
module, dl four subbands can easily be produced for an N x N image,
where N is the desired dimension of the picture to be compressed
(see Figure 3b). It isevident from Figure 3b that the only difference
between the Lowpass Lowpass module and the other subband

modules is that the “r” (reference level) and “s’ (Sgnd leve) vaues
are in different locetions, and placing the “r” and “s’ vaues in
different locations smply alow the difference coefficients to be
produced. Theleft and right hand sides are composed of an array of
“r" and “s’ values, respectively in Figure 3a The parameter “r”
represents the reference level of the pixd or the initid charge stored
in the pixel while s corresponds to the pixel signd plus the reference
level. To get the value of the true Sgnd taken from the pixe array,
the difference “r-s” must be performed. By convention, in Figure 3a
or Figure 3b the bus on the left-hand Sde is consdered positive,
while the bus on the right hand side is consdered negetive. This
convention will be important when the vaues are routed off-chip to
the differencing operational amplifier. In addition, Figure 3b contains
caculdions that the differencing operationad amplifier will be
performing to produce vaues for Lowpass Lowpass, Highpass
Highpass and the rest of the Subband Coding modules. The
capacitors are responsble for performing dl on-chip arithmetic
operdions. Each of the capacitors in Figures 3a and 3b will be
assigned the same capacitance to add proper weighting to the wavelet
coefficients, as there exists a direct relationship between the
capacitance and wavelet coefficients. Recdl thet in the 2-coefficient
Haar, each coefficient has the same magnitude, thus each capecitor
should have the same cgpacitance. In Figure 3a, the average of eech
array can be obtained by placing the four capecitorsin pardle. The
following relation between, g, ¢, and V illudrate this point. In
equation (1), we formulate the generd relation between g, ¢, and V
gqe cv, €]

in which the parameters q, ¢, and V correspond to the charge,
capacitance and voltage, respectively. If two capacitors with the
same capacitance C are connected in pardld, theresult is

Q1+ Q2° 2CV . ©
Equetion (2) reflects charge conservation and capacitance doubling.
As areslt, the average voltage of two capacitors can be represented
by

Ve (Q1+Q2)/2C. )
If these averages are routed onto bus lines and then off chip to a
differencing operationd amplifier, then the necessary addition and
subtraction can be done. An example of this caseis shown in Figure
3a In theory other filters can be redized by usng more capacitors
and by scaling the capacitors, but both require more area. From a
hardware standpoint, the 2-coefficient Haar wavdet lends itsalf to an
area efficient implementation, because of its small number of taps,
and adso because the taps themsdlves are equd in size To achieve a
filter where one coefficient is ten times larger than another requires
that one capacitor be ten times larger than another. When one
considers the precision of the coefficients necessary for many image
compression filters, the area required to redize them becomes
prohibitive.

RESULTS AND DISCUSSION

The circuit in Figure 4 smulates the Lowpass Lowpass module
mentioned in the above section. Badcaly the circuit takes voltages
from the pixd aray and averages them. The pixd arays ae
smulated using voltage sources connected to switches that alow the



pixe arrays to smply charge the capecitors. Each transistor has a
gate voltage that marks the highest vaue that the circuit can average

correctly. SPICE data was taken using the circuit in Figure 4 and the

test image in matrix 1.

é0

o o

o
N NDNDNDNMDNDO

: <D>éD> t‘D)CD)g) mérwrw o D
O NN OO O O O
O NN OO O O O
O N DNDNMNDNDNDDNO
O O O O o O o o
O O O O O O o o
o
=

o

0
(Matrix 2)

Matrix 1, which corresponds to the test image, generatestheimageiin
Figure 5. The test matrix is fed into the software agorithm and the
result is the production of four subbands, among which is the
lowpass lowpass subband, i.e., the average coefficients as shown
below in Matrix 2, which contains the theoretical vaues.

€0.0 1.0 1.0 0.0Q
go.o 2.0 2.0 0.03
€.0 3.0 2.0 0.00
&g.0 20 1.0 o.0f

(Matrix 2)

The same test matrix is fed into the circuit in Figure 4, yielding the
resultsin Matrix 3, which contains the experimenta values.

€.0 05 05 0.0y
é a
20.0 10 1.0 00y
&.5 1.5 1.0 0.04
€05 1.0 05 0.0§
(Matrix 3)

It is noted that these vaues are exactly hdf of the software values
due to the circuit scaling of ¥4 and software scaling of %% Therefore,
the two matrices only differ by a congant, which is exactly the
predicted outcome. Thus, the theoreticd and experimentd vaues
agree within aconstant.

CONCLUSION

We have presented alow power, area efficient implementation of the
two taps Haar wavelet compression dgorithm Our results show that
the results obtained with software smulations can effectively be
implemented in hardware. The theoretical vaues produced from the
software implementation differ only by a constant from those taken
from the circuit Smulation. Results suggest that an agorithm
capableof 8:1, 4:1, and 2:1 compression with error measurements of
37 dB, 37.3 dB, and 39 dB, respectively can effectively be used to
develop a functiond hardware prototype. Although the hardware
limitations restrict the software implementation; the results compare
favorably to those of other unrestricted software dgorithms. The
circuit was smulated usng MicroSim, and the layout is being

implemented using Tanner Tools Pro Suite. Currently, the chipisin
the secondary design phase. Future efforts will be directed towards
completing the layout of the chip and submitting it to MOSIS for
febrication.
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Figure 1. Madlat's Algorithm
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Figure 4. Image Compression MicroSims Schematic

Figure 2. Discrete Wavdet Transform/Hardware —
Original Image
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Figure 3a. Lowpass Lowpass Compression Module

Figure5. Test Imege
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Figure 3b. Wavelet Transform Compression Module



