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ABSTRACT

Device simulation technique is applied to the piezore-
sistive sensor by including the doping pro�le and the
strain distribution in the silicon substrate. In this sim-
ulation, the device equations are solved by Newton's
method taking into account the anisotropic mobilities
of carriers induced by strain, which results in a�ect-
ing the change of the carriers concentrations at each
node. Simulation is done through an algorithm devel-
oped in 'SGFramework'. Modeling of the implementa-
tion of strain induced e�ects in the device simulation is
shown and its feasibility is discussed.
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INTRODUCTION

Device simulation is the technique that have been
developed to design the VLSI and specify the current
behavior in semiconductors, which will be applied to
the solid state sensors if the implementation of sensing
part can be performed.

There are many kinds of stress calculations on vari-
ous diaphragm con�guration of the piezoresistive (PR)
sensor [1], [2], but very few on the current behavior. Pre-
viously we simulated the in
uence of heavy doping for
the temperature coe�cient of PR sensor [3], in which
the impurity band and the tail of the band edge formed
by the interaction of the impurity atoms were treated
as the density of states functions, and then "e�ective
band-gap narrowing" was �gured out.

However proper modeling for the current behavior
in sensor device simulation have not been realized yet.
In the present study we explored the PR sensor simula-
tion by implementing the strain induced e�ects and the
doping pro�le of silicon in the device simulation.

Two methods are widely used in the device simu-
lation: the method to solve the valance equations and
the Monte-Carlo (MC) method for the carrier transport
processes. We adopt the former since it is more conve-
nient simulation in getting along with the conventional
FEM stress calculation.

In modeling the PR sensor the strain a�ects in two
ways. Firstly it brings about additional variation in

the concentration of carriers localized in the doped re-
gion. For example, the shrink of material , as well as
heavily doping, makes the energy gap between the band
edge and the quasi-Fermi level narrower, which makes
the density of carriers in this shrunk region increase.
Secondly, the mobilities of carriers are also changed by
strain.

We investigate our sensor simulation through an al-
gorithm developed in 'SGFramework' [4]. It provides
highly 
exible partial di�erential equations (PDEs) solver
for numerical solution of large-scale computational prob-
lems in applied physics, and includes excellent tools
needed to solve the device equations such as transla-
tor to C++ code, mesh generation program, re�nement
program, etc.

SENSOR SIMULATION SCHEME

The basic semiconductor device equations consist of
three coupled PDEs: Poisson's equation, an electron
continuity equation and a hole continuity equation. In
order to solve these device equations the �nite-di�erence
method is popularly used [5]. In this procedure the sim-
ulation domain is divided into meshes and the values ap-
peared in the PDEs are discretized at node which is the
vertex of the meshes. By this discretization procedure,
the Poisson's equation becomes the box integration and
the continuity equations become the central-di�erence
approximation or the Scharfetter-Gummel discretization
[7].

Then discretizing a system of PDEs on an appropri-
ate solution mesh results in a system of algebraic equa-
tions which are coupled and usually nonlinear. These
algebraic equations are solved via Newton's method for
nonlinear system. At each iteration of Newton's method,
the linear system is solved via, say, Gauss-elimination
algorithm.

As for our overview of the sensor simulation, we
should conmbine our model presented in this study with
other CAD tools for MEMS which will provide the pro-
cess and mechanical data of the diaphragm fabricated
as the piezoresistive sensor device (Fig.1).
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Figure 1: Flow chart of sensor device simulation

Stress Induced E�ects

When mechanical stress is applied to a semiconduc-
tor substrate, a strain is induced in the crystal which
a�ects its resistivity, that is the PR e�ect. The purpose
of the present paper is to attempt to implement this PR
e�ect in the aforementioned device simulation. Before
getting onto the implementation, we brie
y review the
expression of the PR e�ect in silicon [8].

PR e�ects can be expressed as the change of conduc-
tivity induced by stress:

�lm = �0(�lm �
X
i;j

�lmijPij); (1)

where �lm is the conductivity component, Pij is the
stress component, �lmij is the PR coe�cient compo-
nent. In an unstressed crystal, �lm's are independent of
subscripts and �ll's equal to �0 and �lm(l 6= m)'s vanish.
Because of the crystallographic nature, the stress in the
material is described by a second rank tensor and PR
coe�cients are described by a forth tank tensor. The
symmetry of diamond structure reduces the numbers of
independent components of �lmij 's to three.

In general, the conductivity is a second rank tensor,
which is expressed as (2) and de�ned by the current
components Jl's and the electric �eld components Em's.

Jl =
X
m

�lmEm: (2)

In a strained silicon, the conductivity dose not only
changes its magnitude, but also becomes to have an
anisotropic property, whose tensor has o�-diagonal com-
ponents.

The above expressions are de�ned with reference to
the principal crystal axes. They usually required in an
arbitrary oriented coordinate system. In order to cal-
culate them for arbitrary crystallographic directions, a
tensor transformation of the coordinate system shall be
applied. In this transformation, we consider a Cartesian
system whose three axes have direction cosines [l1m1n1],
[l2m2n2] and [l3m3n3] with respect to the principal crys-
tal axes. We denote by prime tensor components in the
new coordinate system. The transformations of current,
electric �eld, conductivity, stress tensor and PR coe�-
cient are expressed as follows,
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A typical coordinate system may be selected by making
the new axis 3

0

vertical to the plane of an (lmn) silicon
wafer, that is,

[l3m3n3] = (l2 +m2 + n2)�1=2[lmn]; (6)



and making the new axis 1
0

horizontal to the orientation

at of the wafer.

Implementation in Simulation

The discretized device equations of time-independent
are given by (7), (8) and (9), which are corresponding to
the Poisson's equation, the electron and hole continuity
equations, respectively.

�2
X
j

�
�rE jmid(i;j) Lj

�
= (pi � ni + Ci)Ai (7)

+
X
j

�
Jn jmid(i;j) L(i;j)

�
�RiAi = 0 (8)

�
X
j

�
Jp jmid(i;j) L(i;j)

�
�RiAi = 0 (9)

where �2 is a small dimensionless scale factor, node i
is an arbitrary interior node in the simulation domain,
index j is the jth neighbor of node i, E jmid(i;j) is the

electric-�eld, Ri is the net recombination rate par unit
volume, Lj is the length of the integration edge, Ai is the
area of the integration box, L(i;j) is the length between
the two jth neighbors of node i, ni, pi and Ci are the
electron, hole and the net positive ionized ion concen-
trations, respectively. Ri is composed of Shockley-Read-
Hall recombination, Auger recombination and avalanche
generation, and is the function of ni and pi. The nota-
tion u jmid(i;j) represents the quantity u at the midpoint

of the edge which connects nodes i and j.

Then there are three unknown variables E jmid(i;j),

Jn jmid(i;j) and Jp jmid(i;j) in the above device equa-

tions, which should be substituted for Vi, ni and pi by
using following equations: electric �eld (10), electron
and hole continuity equations (11),(12). Since the latter
variables are directly de�ned at each node, this substi-
tution make a system of algebraic equations straightfor-
ward.

E jmid(i;j) = �(Vj � Vi)=h(i;j); (10)

Jn jmid(i;j) = �n(i;j)fn jmid(i;j) E jmid(i;j)

+Dn
i;j(nj � ni)=hi;jg; (11)

Jp jmid(i;j) = �p(i;j)fp jmid(i;j) E jmid(i;j)

+Dp
(i;j)(pj � pi)=hi;jg; (12)

where Vi is the electrostatic potential at node i, h(i;j)
is the length of the edge which connects nodes i and j,
�n;p(i;j) and D

n;p
(i;j) are the carrier mobilities and the carrier

di�usion coe�cients from i to the jth node, respectively.
The carrier mobilities and di�usion coe�cients obey the
Einstein relationship.

Dn;p
(i;j) =

kBT

q
�n;p(i;j) (13)

The carrier mobilities are in
uenced by several kinds of
scattering mechanisms such as phonon scattering, ion-
ized impurity scattering, neutral impurity scattering etc.,
and are the functions of temperature and impurity con-
centrations. In order to combine them, Dorkel and Leturcq
approximation is available.

In the implementation of the strain induced e�ects in
the device simulation, Vi, ni and pi should be treated as
the functions of strain. However, there are some crucial
problems to deal with the anisotropic property of the
conductivity.

DISCUSSIONS

We would like to consider how the implementation
of the PR e�ects in the device equations is achieved.
The theory of the PR e�ect for n-type semiconductors
was given by Herring & Vogt [9], and that for p-type
was given by Pikus & Bir [10], which are summarized as
follows. A strain in a crystal induces a shift of the band
extrema which causes carrier transfer between these val-
leys, and also induces an e�ective mass shift for p-type
semiconductors. Both of them cause an anisotropic na-
ture in the conductivity.

There seems to be two ways to implement the PR
e�ects, that is to make the carriers concentrations or
the carriers mobilities have the stress dependency. By
the way, the pn-product (14) is usually adopted in the
device simulation to evaluate the band-gap narrowing
by the temperature and the dopant concentrations.

pn = n2ie(N;T ) = n2i0(T ) exp

�
q

kBT
�Vg0(N )

�
; (14)

where �Vg0 is the e�ective band-gap narrowing, N is
the net doping concentration.

From the view point of the theory of the band ex-
trema shift, it looks like plausible that the stress depen-
dency of the carrier concentrations can be implemented
by modifying the pn-product, however, this implemen-
tation becomes more complex because we must make
the carrier concentrations have an anisotropic property.
Keyes �gured out that the strain in crystal degenerates
the band edge energies and causes a change of the scat-
tering rate between the non-equivalent valleys, and H�alg
and our previous experimental results also supported to
his theory [11]. Then we try to implement the stress
dependency in the carriers mobilities.

Finally, we come to discuss the implementation of
the anisotropic mobility. There are two di�cult points
to accomplish this procedure. Firstly, the treatment of
the tensor values makes the solution of device equations
di�cult. The strain tensor a�ects several values in the
device equations and three dimensional expressions. In
a strained crystal the carrier mobilities become a second
rank tensor, whose components are calculated from the
de�nition of the PR coe�cients and expressed as (17).



Then we can calculate the current vector components
which are expressed as (16) and de�ned by the electric
�eld vector components (15) and the obtained mobility
tensor components,

Eu = �(Vj � Vi)=(uj � ui) (u = x; y; z); (15)

Jv =
X
u

�vun jmid(i;j) Eu jmid(i;j) (v = x; y; z);

(16)

�lm = �lm jmid(i;j)

 
�lm �

X
u;v

�lmuvPuv jmid(i;j)

!

(l;m; u; v = x; y; z); (17)

where Jv and �lm are de�ned by both n- and p-type
materials. The magnitude and the turn of the current

ow from the i node to the jth neighbor are de�ned by
J = sign(E jmid(i;j))(J

2
x+J

2
y+J

2
z )

1=2. Above equations

should be replaced by (10), (11) and (12). Secondly,
we must select a coordinate system in order to de�ne
the tensors components. However, we can adopt the
aforementioned coordinate system.
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