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ABSTRACT

The aim of this paper is to establish simple
analytical equations of the beam deflection for different
actuation methods (magnetic with current, magnetic with
magnet, electrostatic and piezoelectric). The analytical
formulae are obtained from the study of the physical
phenomena. Although the results presented are obtained by
making certain approximations, this study provides order of
magnitude results for the deflection, and most importantly
quantifies the influence of each parameter (current, voltage,
thickness, length, etc.).
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STRUCTURE AND ACTUATION

We consider a beam which is free at one end and
built-in at the other. The width is denoted by b, the length
L and the thickness h. The four actuation methods are
presented in the following sections.

Magnetic actuation

Two magnetic actuations are studied:
- Generation of a force located at the beam extremity by
placing the system in an area where there is a magnetic field
and causing a current to flow in a conductor deposited on
the beam (Fig. 1). This force can be controlled by varying
of both the current I and the magnetic field B.
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Figure 1: Magnetic actuation (current)

- Generation of a couple on the beam surface by placing it in
a magnetic field and by depositing a magnetized layer on
the surface (Fig. 2). This can only be controlled by varying
of the magnetic field B. The generated couple is not uniform
and depends on the deflection of the considered point. Two
cases arise according to the technology used to implement
the magnetized layer. We will see that these two cases lead

to the same theoretical approach.
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Figure 2: Magnetic actuation (magnet)

Electrostatic actuation

The electrostatic actuation of the beam can be
achieved by applying a potential difference between the
beam and a rigid electrode placed in front of the beam (Fig.
3). In this case, the electrostatic pressure is applied to the
entire beam surface and is not uniform (it depends on the
deflection of the considered point).
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Figure 3: Electrostatic actuation

Piezoelectric actuation

The piezoelectric actuation of the beam can be
done by applying a potential difference to a piezoelectric
material deposited on the beam (Fig. 4). The elongation of
the piezoelectric layer causes the beam deflection.

Elongation

Figure 4: Piezoelectric actuation

ANALYTICAL PHYSICAL EQUATIONS

The differential equation governing the deflection



of the beam is [1]:
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Where w is the deflection for each beam point of abscissa x
( [ ]x L 0, ), M the bending moment in the section of

abscissa x, Iz  the inertia moment of the section of the
neutral axis z and E the modified Young modulus
(Appendix III).

With the assumption of small deflections 
dw

dx
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Magnetic actuation (current)

With this type of actuation, the beam is subject to
a single force which is located at the beam extremity. The
result then comes from classical mechanics (Appendix I)
with a force magnitude F:

F NIbB= (2)

where N is the number of turns, I the current intensity, B
the magnetic field and b the beam width.
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Note: This equation assumes that:
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Magnetic case (magnet)

With this type of actuation, each section of

magnetic material (length dx) has one dipole moment  dm
r

.
Its modulus is:

dm h b dx= M 2 (5)

where M  is the magnetization and h2  the magnetic
material thickness.

The magnetic field B thus creates a couple given as
follows:

d dm B
r r r
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For small deflections, the angle between the dipole

moment and the magnetic field can be considered constant
and equal to 2 . Then, the bending moment in a section
of x-abscissa is:
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From appendix I, we can see that this type of
actuation is equivalent to the actuation with a single force F
at the beam extremity:

F h bB= M 2 (8)

Appendix I therefore applies, but the force F is
applied not only to the beam but to the combined form of
the beam and the magnet. We can thus apply the results of
appendix I on the condition that we consider the
geometrical properties of a homogeneous beam to be
equivalent to the combined form. This equivalent beam
will consist of only one material (the same one as the
substrate: modified Young modulus E1 ) and will not have
a rectangular section but a T-shaped section: the lower
portion will have a width b b1 =  and a thickness h1

(thickness of the real beam) and the higher portion will have
a width b bE E2 2 1=  (where E2  is the modified Young

modulus of the magnetic material) and a thickness h2 . The
expression of the inertia moment of this equivalent beam is
then:
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Using appendix I with the expressions (8) and (9), we
obtain the deflection expression:
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Note : This expression is only valid if:
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Electrostatic case

With this type of actuation, the beam is subject to
a non-uniform pressure on all the surface facing the
electrode. The electrostatic pressure is not uniform because
it depends on the deflection point of the beam considered:
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with:
• e d d= +1 2 2  air-gap equivalent to the space between

the beam and the electrode ( d1  real gap between the

beam and the insulator, d2  insulator thickness and 2

relative dielectric constant of the insulator material).

• P
U

e
o = 0

2

22
 electrostatic pressure when the beam is not

deformed (U is the applied voltage and 0  is the
dielectric constant).

In this case, the bending moment is:
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And the differential equation to solve to find the
beam profile is thus:
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There is no obvious analytical solution to this
equation. Thus, we propose using an iterative method to
find an approximation to the analytical solution.

When a voltage U is applied between the beam
and the electrode, the beam is not deformed: the
electrostatic pressure can thus initially be considered
constant and equal to Po . According to the results
presented in appendix II, the beam will become deformed
under the action of this constant pressure and the equation
of the beam profile is: w P k xo o= ( ) with

( )k x Eh x Lx L x( ) = − +2 4 63 4 3 2 2 . The electrostatic

pressure is then no longer constant: its expression depend

on the x-abscissa ( )P P w eo o1
2

1= − . The deflection due

to this unconstant pressure is approached by:
w P k x1 1= ( ) , etc.
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The analytical solution of this polynomial equation is:
if w x eo( ) < 4 27  then
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if w x eo( ) ? 4 27  then

w x d( ) = 1 (17)

The pull-in voltage U p i−  is obtained when:
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Piezoelectric case

Let us consider an element of the system taken
between two sections x and x dx+ . The internal forces of
the piezoelectric material section are reduced to a force F2

and a bending moment M2 . Similarly, the internal forces

of the beam are reduced to a force F1  and a bending

moment M1 . By balancing forces and moments on a
section, we obtain the two following equations:

F F1 2 0+ =  and ( )F h h M M1 1 2 1 22 0+ + + = (19)

where M E I r1 1 1=  and M E I r2 2 2= , r is the curvature

radius, E1  and E2  are the Young’s moduli of the beam

material and of the piezoelectric material, I1  and I2  are the
inertia moment of the beam and of the piezoelectric layer,
h1  and h2  are respectively the thickness of the beam and
the thickness of the piezoelectric layer. Combining
equations 19, we obtain:
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The relative lengthening of piezoelectric material
and beam material must be the same at their interface:
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Where U is the applied voltage and d31  the
modified piezolectric constant (Appendix III).

Combining equations 19- 21, we obtain:
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The solution of this equation gives the deflection
profile:
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This equation is similar to the equation presented
in [2].

We have seen that the radius of curvature is
constant. The piezoelectric case is then equivalent to the
actuation of an equivalent T-shaped beam with an inertia
moment Ieq  (eq. 9) with a constant bending moment

Meq :
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Note: As for the other actuations, the deflection expression
can be used only if:
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PARAMETER ANALYSIS

Taking into account eq. 3 we can see that the
beam deflection in the magnet actuation (current) is
proportional to the magnetic field B, to the current I, to the
number of turns N and is inversely proportional to the cube
beam thickness. Moreover, it is independent of the beam
width b.

In view of eq. 10 we know that with a magnetic
actuation with magnet, the beam deflection is proportional
to the magnetic field B and to the magnetization M and
independent of the beam width b. The effects of layer
thickness ( )h h1 2, , beam length L and the modified Young

moduli ( )E E1 2,  are not clear from this expression. The

maximal beam deflection (x = L) is proportional to L3 .

In the electrostatic actuation (eq. 16), the parameter
dependency is not straightforward. But it should be noted
that the voltage U, the length L and the thickness h only

appear associated in the term ( ) ( )L U Eh4 2 3 .

With the piezoelectric actuation (eq. 23), the beam
deflection is proportional to the voltage U, to the modified
piezoelectric coefficient d31 . And the maximal beam

deflection (x = L) is proportional to L2 .

CONCLUSION

As presented in the objective, these four analytical
expressions for the beam deflection can be used to find the
effect of each parameter and to obtain an order of magnitude
for the beam deflection.
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APPENDIX

I.      Beam       deflection        with       a       punctual       force       at       the       extremity

( )M F L x= − − , then ( )w
F
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x L x

z
= −
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II.      Beam       deflection        with       a       uniform       pressure        P    

 ( ) ( )M Pb X x dX
Pb
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III.      Modified       parameters   
since h b<<  and h L<< , the modified Young modulus
and the modified piezoelectric constant are:

( )E Emod = −1 2 and  ( )d dmod = +1 31


