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ABSTRACT

We analyze the instability which is inherent to elec-

trostatically driven microdevices. Further, we propose

a homotopy method to overcome this di�culty during

simulation of these devices. Starting from a simpli�ed

model, the governing di�erential equations are formu-

lated and their stability behaviour is analyzed. Based

on this analysis, a homotopy method is presented which

overcomes this instability. Thus the simulation of mi-

crodevices with both rigid and 
exible structures be-

comes possible with no regard to stable and unstable

areas of operation. The algorithm presented here is

based on an iterative coupling of commercially available

FEM- and BEM- solvers. Numerical results are presen-

ted for a micromirror and a membrane, including the

contact problem.

Keywords: micromechanical devices, stability ana-

lysis, electrostatic drive, simulation, micromirror, mem-

brane

INTRODUCTION

Most electrostatically driven microdevices exhibit an

inherent instability in their operating behavior. Typical

examples include comb drives, membrane-driven pumps,

microrelays, and micromirrors on the actuator side, or

gyroscopes and pressure sensors on the sensor side, where

the unstable behavior becomes apparent as the so-called

snap-down e�ect. This phenomenon is an inevitable

consequence of the simultaneous competitive action of

elastomechanical and electrostatic forces. We discuss

the governing equations and perform a stability ana-

lysis of a generic model problem. On the basis of these

results we are led to a method that allows the analyt-

ical treatment and numerical analysis of the regions of

instability in the whole operating area of the device.

ANALYSIS OF UNSTABLE

OPERATION

As a model problem let us consider a parallel plate

capacitor, where one plate is movable and connected to a

mechanical spring as shown in Fig.1. We assume a linear

spring force with the spring constant k. The area of the

capacitor plate is A, the distance between the plates

in the equilibrium position at zero voltage is d. The

parallel displacement of the movable plate is denoted

by x. When a voltage U is applied at the capacitor,

d

k

x

Figure 1: Idealized lumped element model of an elec-

tromechanical device

the stationary displacement x(U ) is determined by the

implicit equation

F (U; x) =
1

2

U2A�

(d� x)2
� kx = 0

describing the balance of the mechanical and the elec-

trical force. The diagram in Fig.2 illustrates the bal-

ance of forces in a point of equilibrium. The mechanical

and the electrical force are drawn as a function of the

displacement of the movable electrode, with the applied

bias voltage as curve parameter. The hyperbolas repres-

ent electric forces, the straight line represents the mech-

anical force. Balance of forces is attained at the intersec-

tional points of mechanical and electrical force graphs.

The left point (square symbol) denotes a stable equi-

librium con�guration, while the right intersection point

(circle symbol) marks an unstable equilibrium condi-

tion. When the voltage is increased, the hyperbola rep-

resenting the electric force moves upward and, thereby,

shifts the point of stable equilibrium further to the right,

which corresponds to a larger displacement. With fur-

ther increasing voltage, the stable and unstable point

of intersection merge in one single point. The equilib-

rium of forces becomes unstable and the snap-point is

reached. If the applied voltage lies above the snap-down

voltage, the movable electrode pushes to the touch-down

point on the rigid counterelectrode (triangle symbol),
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Figure 2: Mechanical and electrical forces vs. mem-

brane displacement for the idealized membrane drive

model. Curve parameter is the voltage applied at

the electrodes. Circles denote unstable equilibrium

points, squares stable ones. The triangle is the posi-

tion where the insulated capacitor plates touch.

the position of which is represented by a vertical line at

x = d.

For a characterization of the trajectory x(U ) in the

x � U�plane, we di�erentiate the identity F (U; x) = 0

implicitly with respect to U . In our example, this leads

to

dx

dU
=

�
@F (U;x)

@U

@F (U;x)

@x

=
�

UA�
(d�x)2

U2A�
(d�x)3

� k

This equation, the so-called Davidenko equation, con-

stitutes a di�erential equation for x(U ). Since the enu-

merator
@F (U;x)

@U
is always non-zero, we encounter two

di�erent cases along the solution curve

(a) @F (U;x)

@x
6= 0: The curve can be uniquely continued

in a U -neighborhood.

(b)
@F (U;x)

@x
= 0: The tangent is not de�ned.

Case (b) characterizes the snap-down point where

the equilibrium becomes unstable. For �nding the con-

tinuation of the trajectory we could change the local

parametrization from x(U ) to U (x). However, this is

only possible for structures where the displacement is

restricted to one degree of freedom. In the general case

(e.g. for 
exible structures) we have an in�nite number

of degrees of freedom. Finding the inverse function is

not possible in this situation.

A more general way to tackle the problem is to intro-

duce an additional homotopy parameter, which serves

for a local parametrization along a solution trajectory.

In our case, the charge Q stored on the capacitor plates

is chosen, since this quantity is a unique and monoton-

ous function of any possible device con�guration (see

Fig.3).
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Figure 3: De
ection angle of a micromirror vs. charge

stored on the electrodes.

Generally, this approach can be formulated as�
F (U; x)

p(U; x;Q)

�
=

�
F (U (Q; x); x)

Q� C(x) �U

�
= 0

where p denotes an additional scalar equation which

establishes the parametrization. Substituting the elec-

trical force 1
2

U2A�
(d�x)2

by Q
2

2A�
in the model problem we can

easily calculate the di�erential equation for x(Q) which

is:

dx

dQ
= �

�
@F (Q; x)

@Q

�
�1

@F (Q; x)

@x
=

Q

A� � k
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NUMERICAL SOLUTION USING

HOMOTOPY

As in the example above, the charge Q is also a suit-

able homotopy parameter for the numerical analysis of

the behavior of realistic devices. A direct access to the

solution x(Q) would be the integration of the Davidenko

equation (�) [2]. This method requires to know the de-

rivatives
@F (Q;x)

@Q
and

@F (Q;x)

@x
, where usually the latter

is di�cult to obtain from commercially available solvers.

Therefore an estimated derivative must be constructed

which may be numerically di�cult and expensive.

Another access to the solution, which is our approach,

is an iterative method which follows a Gauss-Seidel-like

relaxation scheme [1]. The mechanical subdomain is cal-

culated using the Finite Element Method (FEM) and

the electrical subdomain is calculated by means of the

Boundary Element Method (BEM). Both domains are

coupled through the common domain interfaces. With
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Figure 4: Charge-controlled homotopy algorithm for rigid and 
exible structures.

the homotopy parameter Q kept at a given value, a

Gauss-Seidel iteration between BEM and FEM is per-

formed until convergence to the desired value Q is ob-

tained. In this procedure, the voltage U is not a control

variable but rather a result of the iteration, which deliv-

ers a sequence of solution point triples (Ui; xi; Qi)i, see

Fig.4.

This approach requires no extra treatment of the un-

stable region beyond the snap-down point but shows

stable convergence in the whole range of operation. Fig.5

displays the numerical solution trajectory U (Q) for a

micromirror characterized by a single degree of freedom

(rotation of mirror). Both the stable and the unstable

branch of the numerical solution trajectory are shown,

illustrating the general stability analysis in section 2 for

a realistic device structure.

As another example, we studied a micromembrane,

the dynamics of which is described by an in�nite number

of degrees of freedom. Fig.6 shows the solution traject-

ory U (Q)of the two stable branches (1,3) and the un-

stable branch 2. The stable branch 3 corresponds to the

situation where a part of the membrane touches the in-

sulated counterelectrode. The more charge is loaded the

larger becomes the contact area between membrane and

counterelectrode. If voltage were used as control vari-

able, the response of the membrane would be described

by a "snap-down and release" hysteresis as indicated by

the dashed lines in Fig.6. Along the unstable branch 2,
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Figure 5: Charge stored on the electrodes of a de-


ectable micromirror vs. applied bias voltage.
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Figure 6: Charge stored on the movable plate of a

micromembrane vs. applied bias voltage.

we �nd a rapid change of membrane shape and voltage

with Q. But with Q chosen as homotopy parameter,

the bending of the Q� V characteristics near the snap-

down point as well as its negative slope portion can

be calculated without problems. The obvious numer-

ical roughness of branch 3 is caused by the contact al-

gorithm. Fig.7 shows the deformation of the membrane

shape under the action of the controlling charge. As it

can be noticed, the shape deformation is smooth with

increasing Q until the electrode gets in contact with the

counterelectrode. No snapping occurs under charge con-

trol. The apperent gap just before the membrane meets

the counterelectrode is a consequence of the equidistant

discretization of charge used in the numerical procedure

but does not indicate snap-down. At a certain charge

Qt, a single point contact is attained. With further in-

crease of Q, the membrane shape becomes more and

more rectangular.
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Figure 7: Deformation of the membrane vs. applied

charge

CONCLUSION

Based on the stability analysis of the describing equa-

tions of electrostatically driven microdevices, a homo-

topy method was developed to simulate the behaviour

of this class of microdvices. This method uses the stored

charge as a homotopy parameter which is a unique and

monotonous function of the geometric con�guration. This

homotopy method allows to simulate structures with a

�nite number of degrees of freedom (i. e. rigid structures

like micromirrors) as well as structures with an in�nite

number of degrees of freedom (i. e. 
exible structures

like pump membranes).

The numerical approach is to couple a FEM solver

and a BEM solver by a Gauss-Seidel relaxation scheme,

incorporating the homotopy method.

Numerical results show the feasibility of this approach.

The behaviour of the micromirror was calculated from

zero position to touch-down, covering both its stable and

unstable branch. Snap-down voltage, release voltage,

and mirror position were calculated.

The behaviour of the membrane is similar to the mi-

cromirror between zero position and touch-down. Snap-

down voltage, release voltage, and membrane shape were

calculated here as well. After touch-down, membrane

operation continues due to the 
exibitity of the mem-

brane. Solving the contact problem after touch-down

within the FEM solver, the behaviour and shape of the

membrane can be simulated in all areas of its operation.

REFERENCES

[1] E.-R. K�onig, P. Groth, G. Wachutka, "New coupled-�eld

device simulation tool for MEMS based on the TP2000

CAD platform", Sensors and Actuators A, in press,

(1999)

[2] R. Seydel, "Practical Bifurcation and Stability Ana-

lysis", Springer, New York, (1994)


