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ABSTRACT

Non-conventional finite element analysis (FEA)
based on linear elastic fracture mechanics (LEFM) is
applied to fractured MEMS specimens with notches. The
objective of this paper is to test the applicability of LEFM
at mesoscale and to evaluate the application of newly
developed FEA methods to MEMS fracture analysis. The
displacement discontinuity method and the element free
Galerking meshless method are used. The tested cases
consisted of specimens in the form of notched cantilever
beams, and double cantilever beams suspended by an
anchor by two thin beams. A good correlation with some
experiments is obtained.

Keywords: Linear elastic fracture mechanics, MEMS
reliability, Numerical methods, Meshless Methods,
Boundary Element Methods.

1. INTRODUCTION

As MEMS popularity and applications are increasing,
questions are being asked about their reliability. Unlike
integrate circuits and similar devices from which MEMS
technology borrowed a great deal, MEMS perform mainly
repeated mechanical actions making them prone to fatigue
and fracture failures.
A number of experimental programs have been conducted
to extract the fracture properties of silicon for MEMS
applications. A comprehensive review of experiments for
the determination of fracture toughness for silicon MEMS
was conducted by the authors [1, 2]. It was found that the
fracture toughness of single crystal silicon at micro and
macrosdcale was around 0.84- 0.9 Mpa.m1/2, whereas
polycrystalline silicon displays different behaviors at
macro and microscale. Unfortunately, most publications
reporting fracture of silicon do not report the details of the
dimensions and boundary conditions of the test
specimens, making it difficult to simulate their
experiments numerically and to assess the validity of
conventional linear elastic fracture mechanics for MEMS
fracture. Four experiments among those reviewed
provided enough data for modeling and were used as
benchmark for numerical simulation using two non-
conventional BEM and FEM method namely the
displacement discontinuity method (DDM) and the

element free Galerkin method (EFGM). The DDM is
explained in details in references [3, 7] and the EFGM is
briefly described here.

2. THE ELMENT FREE GALERKIN
METHOD

The element free Galerkin method (EFGM) is a
meshless method and is suitable for problems with
changing geometry such as crack propagation since it
does not require any meshing. The crack is simply
considered as a boundary extension. The numerical
procedure is quite similar to that of finite element except
that, in EFGM, least square interpolants are used to
approximate the dependant variables. These interpolants
use an influence domain to define the connectivity
between nodes.

For an arbitrary point x∈Ω , we define a small
domain Ωx surounding this point with Ωx ⊂  Ω .
Considering a function u(x) where x=(x, y) defined on the
domain Ω . Thus for any given point x∈Ωx, the function
u(x) is approximated by :

 u(x)= ∑
m

j

jp (x) ja (x)=pT(x)a(x)                                    (1)

where pj (x) are monomials in the space coordinates xT=
[x, y] and aj (x) are coefficients that are function of x. a(x)
are obtained by using the L-norm which consists in
minimizing the expression:
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where n is the number of points in the neighborhood of x
where the weight function w( x – xI) ≠ 0, and  uI  is the
nodal value of u for x = xI. Equation (2) leads to the
following linear relations between a (x) et uI:

 A(x) a(x) = B(x) u                                                          (3)
where A(x) and B(x) are defined as:

      )p(x )x(p (x) A(x) T
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by defining the shape functions as :
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x)(hu can be writen as :

∑=
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In this work, the exponential weight function is selected
and is defined as:
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Finally, the problem is solved by a stiffeness equation
Ku = f where K and f are composed of submatrices KIJ

(2×2)  and fI (2 × 1) given by:

 d  SND B               

d  B D N S    d B D  B  K

Γ−

Γ−Ω=

∫
∫∫

Γ

ΓΩ

u

u

J
TTT

I

JIJ
T
IIJ

φ

φ
                         (9)

    and      ∫∫∫ ΓΩΓ
Γ−Ω−Γ=

ut

TTT
IIII d uSNDBdäb  dätf

_
φφ

(10)

where D is the elastic matrix and
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Fracture mechanics concepts are introduced by
defining the domain of the J integral near the crack tip.

3. APPLICATION TO MEMS FRACTURE

The element free Galerkin method is used to simulate
fracture experiments conducted by Ballarini et al (1997)
and Suwito and Dunn (1997).

Case study 1

The test setup of Ballarini et al (1997) is shown in
Fig.1(a) and the numerical model in Fig.1(b). The length x

which corresponds to the uncracked ligament has three
values 6, 10 and 20µm . A probe was used to open the
notch (the notch is considered as sharp crack in the
mathematical model) to cause fracture where the
prescribed displacement u=4µm corresponds to the probe
wedge. Polycrystalline silicon was considered isotropic
with a Young’s modulus and a Poisson’s ratio
respectively equal to 160 GPa and 0.22. In this example,
we considered the same assumptions as Ballarini et al.

600 uniformly distributed nodes were used. Figures
4.(a) and (b) show the variation of the stress intensity
factor in terms of the distance of the probe tip from the
crack tip. Both methods gave perfectly concordant results
with those obtained by Ballarini et al.

Case study 2

Suwito and Dunn (1997) studied the effect of notch
depth on a 3-point beam and the small width on T
structure made both of anisotropic single crystal silicon.
The specimens are shown in Fig. 3, 4, and 5.

The dimensions of the first specimen are L = 20 mm,
b=1.5 mm, h=1.08 mm and a was equal to either
0.093mm, 0.147 mm, 0.164 mm or 0.210 mm.

Figure 1: (a): Schematic of the Test setup, (b): Half of
the mathematical model
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Figure 2: Stress intensity factor vs. probe position for
comb distance equal to infinity, (a): DDM, (b): EFGM.

For this example, 800 uniformly distributed nodes
were used. Results obtained by using EFGM are
compared to those obtained by Suwito and Dunn in
Table1.

For the second specimen, the dimensions are
L=20mm, b=1.5mm and h=1.08mm, the notch depth
a=0.211mm and 0.213mm for two values of d=0.184mm
and 0.029mm.  Here also 800 uniformly distributed nodes
were used. Results obtained by using EFGM are
compared to those obtained by Suwito and Dunn in
Table2.

The forth experiment considers the effect of sharp
corners in T- shaped specimens of widths w2=500 µm and
w1=8 and 28µm. Here again 800 uniformly distributed
nodes were used and results are shown in Table 3.

Figure3: 3 point flexure beam used by Suwito (notch
angle = 70.53°).

Table 1: Stress intensity factor of 70.53° notched beams
with four different notch depths.

KI (MPa·m0.5)
a=0.093mm

σr =86.19 MPa
a=0.147mm

σr =61.90 MPa
Suwito 0.81 0.73

EFGM 0.68 0.69
KI (MPa·m0.5)

a=0.164mm
σr =61.15 MPa

a=0.210mm
σr =52.60 MPa

Suwito 0.76 0.74

EFGM 0.65 0.67

Figure 4: 3 point flexure beam used by
Suwito (notch angleγ = 125.26°) wiith a flat

notch part d.

Table 2: Stress intensity factor of 125.26° notched beams
with different notch depths and flat notch part

KI (MPa·m0.5)
a=0.211mm
d=0.184mm

σr =186.11 MPa

a=0.213mm
d=0.029mm

σr =157.18 MPa
Suwito 6.35 6.60

EFGM 3.945 4.129
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Figure 5: T structure

Table 2: Stress intensity factor of the T tructure for three
different values of w1.

KI (MPa·m0.5)
w1=8µm

σr=951.4MPa
w1=28µm

σr=674.2Mpa
Suwito 2.09 2.09

EFGM 1.62 1.53
KI (MPa·m0.5)

w1=48µm
σr=554.7Mpa

Suwito 2.10

EFGM 1.652

5. CONCLUSION

A non-conventional finite element method was presented
as a tool to simulate fracture experiments of MEMS
specimens with the assumption of the applicability of
linear elastic fracture mechanics. Simulations were the
most successful for polycrystalline silicon. For single
crystal silicon, the sharper the corners or notches, the less
accurate the simulation. Further research is needed to
derive an appropriate finite element formulation for
anisotropic fracture of single crystal silicon.
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