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ABSTRACT

Gene expression data in biology is becoming important as
the amount and quality of the data rapidly increases.
However, the amount generated can be daunting and its
direct interpretation is often difficult.  The interaction of the
genes and the number involved can be large.  Is there a
dynamical system at play?  This paper discusses modeling
gene expression data as a computational reconstruction of a
dynamical system.  The problem is a classic inverse
problem – given the data what is the model?  A
phenomenological model based on a extension of
generalized Lotka-Volterra models is developed.  One
advantage of these models is that they are readily amenable
to biological interpretation.  The reconstruction is ill-posed
and subject to numerical instability problems when is there
not enough data of sufficient quality.  We will discuss how
these problems can affect the results and how we might
overcome them.  Lastly, we will present some preliminary
results and some applications of the reconstructions.
Keywords:  genetic regulatory networks, gene expression,
ordinary differential equations, Lotka-Volterra

INTRODUCTION

Modern biology is increasingly being driven by its ability to
generate large amounts of data that was previously
impossible to attain.  This revolution started first with
sequence data (genomic and EST) and is now starting to
encompass the abundances of genes and proteins inside
cells.  This flood of data has created a paradigm shift.  We
may have collected the data, but now we need to find the
corresponding biological functions.  Gene expression falls
within this category.  We now have the capability to find
the expression patterns of thousands of genes
simultaneously[1].  For organisms with small genomes, the
entire genome can be a placed on a single microarray
grid[2, 3].

Large scale gene expression analysis allows an
unprecedented opportunity to dissect the function of the
genome of cells as we explore the effects of various natural
biological conditions – metabolism, growth,
morphogenesis, differentiation, development, aging.  In

addition there are various experiments where we wish to
probe cellular function by inducing behavior.  In the
pharmaceutical industry there is interest in understanding
how drugs work and their mechanism of action.

Not only is understanding mechanism important, but so is
variation in mechanism.  Variation can occur for a variety
of reasons – temporal and spatial change[2, 4-7], tissue
specific differences[8, 9], development of the organism or
the aging of the cell[10, 11].  To understand variation and
the resulting behavior of the cell involves deciphering the
very complex processes of coordinated expression of genes.
By using gene expression studies of thousands of genes
through time we can begin delineating the interactions
between the genes.  This is what we mean by the
reconstruction of a gene regulatory network.

THE DYNAMICAL MODEL

We wish to consider the following experiment as the basis
upon which the reconstruction will be based:

•  All the genes or some carefully selected subset of the
genes (presumably one pathway) is chosen and used
in the expression experiments

•  Their expression levels (absolute abundance or
concentration) will be measured at each sampling
point

•  There will be some continuous, monotonically
increasing variable which is the independent,
controlling variable for the experiment – time, dose,
etc.  Samples will be taken at several different values
of this variable.  For the purposes of this paper, we
will always refer to this variable as ‘time’.

The matrix of the different gene expression values
conventionally has increasing time as the columns and the
genes as the rows.  The matrix is usually referred to as a
‘grid’.

Because we wish to develop completely automated
procedures, any modeling approach must scale to tens of
thousands of genes for explaining the expression dynamics
of full or partial (i.e. pathways) genomes.  This requires a
robust model that is capable of handling many different
situations.  Genetic regulatory networks have a long history
and many different approaches have been attempted[12-19].



However, in many models, expression is  binary; there is
only an interaction graph not a dynamical model; or the
model is very detailed but only for a limited number of
genes and proteins.  We propose modeling for explanatory
purposes.  We don’t expect the model to be ‘correct’ in an
absolute sense.  We do expect that it is good enough to
reproduce the phenomenology of the gene expression
patterns that it can serve as a ‘clue’ generator – a way to
steer new experiments to the most important events that are
happening.

The reconstruction of the genetic regulatory network is an
explanation as a dynamical system of the temporal
evolution of the column vectors of the expression grid:

    G(t ′ ) = F(G, t; T*) (1)

where G(t) is the column vector of the gene expression
values at time t, and T are the interaction parameters that
govern the strength of the interactions.  The dynamical
system F, is unknown, so that we have an inverse problem.
We’ve measured G and t, and hence G’, but we do not
know F or T.  The assumption is being made that this is a
locally smooth and continuous dynamical system.  This is
reasonable since there are biological reasons to believe that
if the biological change in the system is ‘small’ and
‘smooth’, that concomitant changes in the gene expression
will also be ‘small’ and ‘smooth’.

The major problem with this view, is that, by necessity, it is
incomplete.  The model implies that only genes interact
with genes and that genes control the production (i.e.
transcription) of new gene expression values.  Only the
genes are included even though we know that it is the genes
and proteins that are coupled and that the proteins are
critical to the transcription of the genes.  The dynamical
system in equation 1 should be expanded to included gene-
protein and protein-protein interactions:

G(t ′ ) = F1(G, P,t; T*) (2a)

    P(t ′ ) = F2(G, P, t; T*) (2b)

where P(t) is the column vector of the protein products
corresponding to the genes, G(t).  However, this inclusion is
impossible, when there are no protein values measured.
Since we are excluded from building such a dynamical
system, we have chosen to reconstruct the gene-only
dynamics (equation 1) as a “phenomenological” model of
the interactions.  The philosophy behind the reconstruction
is that it will provide “clues” to the biology.  Such clues
will be useful in helping to prioritize and design
experiments to pin down the “true” interactions.

The inverse problem represented by the gene regulatory
network (equation 1) still requires the definition of the
dynamical system model.  We have chosen extensions to
Generalized Lotka-Volterra (GLV) models.  GLV models
are quite useful for handling situations where there are time

varying and interacting populations and where there are
resource limitations in growth[20, 21]:

′ G j = Tj ,k
1 Gk

k
∑ + Tj,k

2 G jGk
k
∑ (3)

In this sense the reconstruction of the gene interactions and
population modeling are similar:

•  the lower bound is zero
•  the upper bound is finite
•  there are finite resources governing the growth of

populations (expression)
 The T1 and T2 matrices are the interaction strengths of the
gene interactions.  They can be interpreted roughly as
follows:

Tj,k
1

 is the control of gene j by gene k through a serial

pathway (e.g. serial tranduction pathway)

  Tj,k
2

 is the control of gene j by gene k as a ‘regulon’ (a

gene that activates or inhibits the action of another
gene)

Although there is no space in this paper to discuss the
properties of equation 3, we note that it can be recast in a
traditional Lotka-Volterra form:
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Terms 2 and 3 can be viewed as the self-limiting logistic
growth contributions; term 4 represents the cooperation (i.e.
activation), if positive, or competition (i.e. inhibition), if
negative of the other gene ‘populations’.  Similarly, the
model (equation 3) can be considered a Ricatti differential
equation[22]:

NUMERICAL CONSIDERATIONS

For the purposes of this paper only one example will be
provided.  A colony of Sacchromyces cerevisiae yeast was
fed glucose and the expression of 6153 genes was measured
over time[3].  The data for this experiment is shown in
Figure 1.

Now that the model is chosen, it is necessary to numerically
determine the T1 and T2 matrices from the data.  This is a
classic inverse problem since we know the G(t) values
experimentally and can compute the derivatives.  While, in
principle this is possible, there are two basic problems that
must be overcome.  The reconstruction can be considered as
a linear optimization problem for the determination of the T
matrices:



argmin
T 1,T2

′ G j − Tj,k
1 Gk

k
∑ + Tj,k

2 G jGk
k
∑ (5)

The first numerical challenge is to calculate accurate
derivatives from what may be noisy, infrequently sampled
data.

The second numerical obstacle is that the biological
variation in the problem may not be sufficient to distinguish
the functional behavior of all the genes.  For example, in the
diauxic shift experiments in yeast, the yeast colony is
supplied a finite amount of glucose.  The glucose eventually
is consumed and the yeast must changed their metabolism.
The problem is that the ‘biological variation’ is the
perturbation of cellular function by ‘dosing’ with glucose.
Not all biology in the cell is exposed – mostly metabolism.
However, in this experiment 6153 yeast ORFs (i.e. putative
genes) were placed on the grid – the entire genome.  Not
every gene is going to be affected significantly.  We expect
to see similar patterns of expression for large numbers of
genes.  This causes degeneracy problems in the model.
Consider the situation of two genes, p and q, that are
degenerate.  Their contribution to the first term of equation
3 is

Tj, p
1 Gp + Tj ,q

1 Gq = Tj , p
1 + Tj ,q

1{ }Gp

= Tj , p
1 + Tj ,q

1{ }Gq

(6)

A similar degeneracy occurs for the T2 matrix.  Clearly the
determination of the T coefficients is ambiguous in such a
situation.

The solution of this problem is to cluster the genes into
pattern scaling-invariant degeneracy classes.  The
reconstruction is then performed not on the genes, but the
gene clusters.  Such degeneracy can be quite severe.  In the
diauxic shift case mentioned above, 6153 ORFs can be
clustered into approximately 25 clusters.  Only 4% of the
expression behavior can be used!  The degeneracy problem
is basically a rank deficiency in a different guise.  See
Figure 2 for an example of the clustering of the expression
patterns of the ORFs.

The third computational impediment arises from limitations
with the experiments currently being performed.  There are
not enough time points sampled to properly determine the
system.  This has implications for the accuracy of
interpolating the expression data and calculating
derivatives.  More significantly, with only 3 or 5 or 10 time
points the system is severely under-determined and the
determination of the T matrices is ill-posed.  In the diauxic
shift example being used, there are 7 time points to
determine 1250 coefficients (T1 and T2 with 25 gene
clusters).  We have been exploring the use of regularization

techniques to overcome the ill-posedness of the system[23,
24].

The fourth task is to guarantee that the solution is truly a
good solution.  The computation of the T matrices (equation
5) is a solution only in an average or approximate sense,
especially when regularization is used to overcome the ill-
posedness.  Once the T matrices are computed, then, in
principle, it should be possible to integrate the ODEs
(equation 3).  There may be many T matrices that are
acceptable from the optimization/regularization
computation, but we have no guarantee that they represent a
numerically stable solution of the ODEs.  In essence,
numerical stability and integrability are additional checks
on the quality of the solutions.  Given two solutions that are
essentially equivalent, stability becomes the deciding
criterion.  Figure 3 is an example of the reconstruction of
the model and its integration.  It can be seen that in most
cases that the model is doing a good job of describing the
data.  This is a good example of a reconstruction, but we are
still striving to attain this quality for all data sets.  We are
still exploring techniques for incorporating numerical
stability into the optimization, probably as an extension to
regularization, in order to make the technique robust for all
data sets.

DISCUSSION

In Figure 3 is the reconstruction of the diauxic shift data.  In
Figure 4 are the corresponding T1 and T2 matrices.  It can
be seen that several gene clusters are strongly regulated by
others and that some gene clusters appear to be regulated
more than others.  This implies that there is specific
regulation at work – to the degree that the model is
accurate.  The next step is to examine the clusters, look at
the functional characteristics of the gene components and
develop a biological interpretation of the genetic regulatory
network.  In this example, the interpretation that is
developed mirrors the biological knowledge that we already
have.

There are several tasks that we have only begun to explore.
First, the robustness of the numerical procedures must be
improved – regularization and numerical stability.  Next we
have also started to explore automating the biological
interpretation of the reconstructions.  This means trying to
automate watching the behavior of the system – which gene
clusters are strongly coupled – as the dynamics evolve and
to find biological ‘themes’.  Another approach is to do this
theoretically by examining the behavior of the dynamical
system.  So far, the high dimensionality of the system and
the arbitrary coefficients has made it difficult to use the
analytical and stability properties of Generalized Lotka-
Volterra and Matrix Ricatti systems[25-28].  The goal is to
try to predict future behaviors of the system as the
biological variation is changed.  For example, if we have
the reconstruction for a cell treated with a drug, we would



like to try to predict the behavior for a different drug.  Or to
predict how the system would behave at much longer times
than can be measured experimentally.

It is our belief that the phenomenological reconstruction of
genetic regulatory networks is achievable and that the
phenomenology is a realistic mirror of the underlying
biology.  While not a perfect doppelganger, there is
sufficient biology being captured that the reconstructions
can be used to start computationally exploring the
complexities of these systems.
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Figure 1
The rows are the 6153 ORFs from the entire genome of
Sacchromyces cerevisiae[3].  The yeast have been given
glucose and the abscissa is the time into the experiment.
The false coloring represents the normalized expression
levels of the different genes.
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Figure 2
The 6153 yeast ORFs have been scaling clustered into 25
expression clusters where each cluster is scaling invariant.
This is an example of one of the clusters.
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Figure 3
The reconstruction of the genetic regulatory network where
each circle represents an experimental data point, the

abscissa is time, and the lines are the integrated gene cluster
dynamics (equation 3).
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Figure 4
The T1 and T2 matrices from the reconstruction of the yeast

grid.  The y axis is j; the x axis is k.  The false coloring
indicates the magnitude of the elements as well as
their sign.  Positive values indicate activation;
negative ones inhibition.
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