
Impact of Heat Source Localization on Conduction Cooling of
Silicon-on-Insulator Devices

P. G. Sverdrup, Y. S. Ju, and K. E. Goodson
Stanford University, Stanford, CA, USA, goodson@vk.stanford.edu

ABSTRACT

The temperature rise in compact silicon devices is
strongly underestimated at present by simulations using
conventional heat diffusion theory, which is based on
the Fourier heat conduction law.  This problem is
particularly important for devices in which the region of
strong electron-phonon coupling is narrower than the
phonon mean free path, .  The phonon mean free path
in silicon near room temperature is already comparable
to the minimum feature size of current generation
transistors.  This work numerically integrates the
phonon Boltzmann transport equation (BTE) in order to
determine the impact of this heat source localization.
The difference in temperature rise predictions based on
the BTE and conventional diffusion theory increases by
a factor of twenty as the heat source size varies from 10

to 0.1 .
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INTRODUCTION

The scaling of integrated circuits is yielding
transistors with channels of length below 200 nm.  This
is comparable to an average value of  appropriate for
the simulation of second breakdown phenomena during
electrostatic discharge (ESD) transients, which is
estimated to be 180 nm [1].  Large electric fields near
the drain side of compact transistors create hotspots
with characteristic dimensions of approximately 100 nm
[2], which decrease in width with device scaling.
Silicon-on-insulator (SOI) devices are particularly
susceptible to self heating and thermal failure because
thermal conduction cooling is confined within a silicon
layer of thickness as low as 50 nm.  Because device and
hotspot dimensions are comparable with the phonon
mean free path, thermal simulations must consider the
impact of phonon-interface scattering and heat source
localization on the temperature distribution.  These
non-local thermal conduction phenomena cannot be
directly calculated using the heat-conduction equation
based on Fourier’s law.

Phonon transport in semiconductor devices is
modeled at present using diffusion theory based on
Fourier's law without considering non-local phenomena
[2,3].  However, past work has illustrated the impact of
non-local phonon conduction in relatively simple
geometries, including thin films, superlattices, and
polycrystalline materials [4,5,6].  Sondheimer [7]

analytically solved the BTE for electron transport in
thin films, yielding a reduced effective thermal
conductivity accounting for boundary scattering.  This
result can also be used to calculate a reduced effective
phonon thermal conductivity accounting for interface
scattering.  However, this approach does not account for
heat source localization, resulting in underestimation of
the temperature rise in compact transistors.  When

 approaches the hot spot size, a strong nonequilibrium
situation exists within the phonon system because of
the reduced frequency of carrier collisions [9].  This
causes the temperature rise to increase compared to that
predicted by conventional diffusion theory.  There have
been no simulations that resolve non-local phonon
transport in practical device geometries.  

The present work integrates the BTE to simulate
heat transport in compact semiconductor devices.  The
goal is to determine the impact of the hot spot size on
the temperature distribution within a device.  A goal for
future work is to improve diffusion modeling in device
simulators, such that it can account for nonlocal phonon
transport for arbitrary heat source distributions.

SOLUTION METHOD

The transient non-dimensional phonon BTE can be
written in the relaxation time approximation as
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where f (x*,y*, , ,t*) is the number of phonons in a
given state described by the dimensionless coordinates
x* = x/Lx and y* = y/Lx and the directional cosines 
and .   The dimensionless time is t* = t v / L, where v
is the phonon velocity.  The third term on the right of
Eq. (1) accounts for phonon scattering in the relaxation
time approximation using the Planck distribution
function, feq(x*,y*,t*), and the dimensionless mean free
path, *.  Energy absorption from hot electrons is
considered using the source term q.  

The distribution function, f, depends on the two
dimensional x and y grid location as well as the
direction of phonon travel within the sphere of solid
angles.  For calculations of the heat flux and energy
density at a given location, the Discrete Ordinates
Method originally developed for neutron and radiative
transport is used for integration over all solid angles.
The solid sphere is divided into discrete directions of



phonon transport distinguished by sets of  and 
values with weights, wi, corresponding to solid angle
fractions on the unit sphere [9,10,11].  The weights
satisfy
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This work uses the level symmetric hybrid (LSH)
scheme [10] for angular discretization.  Level symmetric
techniques use the same set of directional cosine values
in each coordinate direction ( 1= 1, 2= 2, …). In
addition, the directions of phonon transport are chosen
such that any particular direction has corresponding
directions with 90° rotations about any axis ( n= n,

n=- n,  − n= n,  − n=- n).  This simplifies the
implementation of boundary conditions and removes
directional biasing.  The LSH method calculates
directions and weights based on constraint equations
such that moment equations of the phonon intensity are
satisfied [10].

The simulation domain for a simplified SOI device
is depicted in Figure 1.  The hot spot region located in
the center of the domain represents the characteristic
peak in the heat generation rate associated with electron-
phonon energy transfer, which is typically on the drain
side of the device.  The top and bottom surfaces are
modeled using diffuse boundary conditions which
simulate phonon scattering at the interface between the
Si layer and the SiO2.  The diffuse reflection boundary
condition is
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for the bottom and top surfaces, respectively.  The side
boundaries are assumed to have constant and
nonvarying temperatures and are placed far away from
the heat source compared to the mean free path.  The
side walls serve as sinks for the heat supplied to the
middle of the computational domain.  The large
separation ensures that the only non-local effect
resolved by the simulation will be the heat-source
localization.   

In order to obtain the temperature distribution, Eq.
(1) is integrated forward in time in each of the discrete
directions.  The MacCormack time integration method,
which is frequently used for solving hyperbolic
equations [12], is used for explicit time advancement in
order to capture the sharp features associated with the

source term and to resolve the wavelike nature of
solutions to the BTE.  At each time step, fn+1 are
calculated from fn and feq

n.   Then, feq
n+1 is calculated

before the solution can proceed. The equilibrium
distribution function  feq is assumed to be the average
value of f over all solid angles that would be obtained if
the phonon system was allowed to relax to a uniform
value.  The equilibrium distribution function is
calculated as shown in Eq. (5).
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The distribution feq can then be used to extract the
temperature distribution from the temperature dependent
distribution function.

RESULTS AND DISCUSSION

The steady state temperature difference between the
BTE and standard diffusion theory is shown in Figure
2.  This plot isolates the impact of localization from
scattering on the top and bottom surfaces of the SOI
layer by solving the one-dimensional version of the
transport equation. While a one-dimensional solution

to the BTE is of limited relevance for practical device
structures, it serves to illustrate the impact of heat
source localization on the temperature rise.  Ratios of
heat source size to the mean free path, d/ , range from
0.1 to 5.  The temperature at the center of the heated
region increases significantly as the heat source size
becomes smaller than the mean free path.  In the heat
source region, phonons are continuously produced by
the simulated electron-phonon collisions.  For large
values of  compared to d, the reduced number of
scattering events in the heat source region results in a
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Figure 1: Simulation domain, which approximates the
channel region of a silicon-on-insulator transistor.



substantial increase in the temperature rise.  As d
becomes much larger than , the likelihood that
phonons will scatter before leaving the heat source
region increases dramatically.  This establishes near-
equilibrium conditions for the phonon system within
the heat source region and renders diffusion theory valid.
The increased temperature rise caused by heat source
localization is confined to a distance approximately two
mean free paths from the edge of the heat source. This
can be understood with the help of the survival function
from kinetic theory,

                  

(6)

which states that only a small fraction, N/No, of
phonons generated in the heated region can traverse a
distance much larger than the mean free path without
having a collision.  

Figure 3 plots the peak normalized temperature
difference from Figure 2 as a function of d/ .  The peak
temperature rise difference increases by a factor of almost
twenty as the heat source varies between 0.1

Λ and 10 Λ.  The dimension of the heat source in
existing compact transistors is already comparable with
the mean free path [1,2], and this temperature
augmentation phenomenon will become increasingly
important for evaluation of temperature dependent
electrical properties and for the thermal runaway
characteristics of ESD failures [13].

Solutions of the two-dimensional transient BTE
can resolve temperature fields in practical device
structures.  Eq. (1) can be solved for the thermal
response to brief transient current pulses as well as
steady state heating.  The two-dimensional BTE can

resolve the impact of boundary scattering and heat
source localization, and results can be compared to
Sondheimer's solution of the BTE which accounts for
boundary scattering.  Figure 4 plots the temperature
distribution in a SOI layer in which both the heat
source width, d, and the SOI layer thickness, Ly, are
equal to Λ.  The characteristic increase in the
temperature rise compared to diffusion theory can be
seen in the heat source region.  The two-dimensional
simulations resolve the simultaneous impact of
localization and the scattering of phonon heat carriers on
the top and bottom surfaces of the SOI device layer.
This additional scattering augments the impedance for
conduction along the SOI film.  

CONCLUSIONS

The solution of the phonon Boltzmann transport
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Figure 3: Impact of heat source localization on
discrepancy between BTE and diffusion theory.

Figure 4: Temperature distribution in a silicon-on-
insulator device layer with d=Ly= .
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Figure 2: Temperature distribution in the localized heat
source region.



equation illustrates the impact of localized heat sources
on the peak temperature rise in semiconductor devices.  
This work contributes to a better fundamental
understanding of heat transport in micro- and nanoscale
regimes where heat source localization is important.
The solution method developed here for the two-
dimensional BTE will be used for studies for the
coupled impact of localization and phonon boundary
scattering in compact transistors.
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