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ABSTRACT

This paper describes an analytical approach for the

network-type modeling of pull-in comb drives based on

a mathematical �eld description using conformal map-

ping methods. The model was coded in MAST R for the

SABER R simulator and its accuracy was compared to

FDM and boundary element simulations using MAFIA

and MEMCAD R. This approach leads to a library of

network-type multi domain component models for the

system simulation of MEMS, providing nearly the ac-

curacy of �eld-solving codes at network-type simulation

speed.1
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INTRODUCTION

Comb structures on MEMS sensors are straight or

curved �ngers which serve both as actuators (converting

electric energy into mechanical energy) and as sensing

devices, to detect displacements between the substrate

and the moving parts of the sensor. The combs come

in interdigitated pairs: one part, called the stator is

anchored to the substrate physically but isolated from

it electrically, and the other is attached to the mov-

ing structure. The displacement between the combs is

determined by measuring the electrical capacitance be-

tween them. The forces between the combs depend on

their relative position and the applied voltages. Thus,

the system level model of a comb structure must accu-

rately model both the position-dependent capacitance

and the forces between the stator and the movable comb.

CAPACITANCE CALCULATION

The position dependent electrostatic �eld between

the combs is the key to the capacitance and force cal-

culation. In order to �nd an analytical �eld approxima-

tion, some essential simpli�cations have to be made:

1MASTR is a registered trademark of Analogy, Inc.

SABER R is a registered trademark of American Airlines, Inc.,

licensed to Analogy, Inc. MEMCADR is a registered trademark

of Microcosm Technologies, Inc. MAFIA is a product of Computer

Simulation Technology.

1. Just two variables describe the position of the mov-

able comb, one for the horizontal pull-in and one for the

vertical displacement. Angular motions or the horizon-

tal displacement perpendicular to the comb �ngers are

neglected.

2. There is no restriction for the overlapping range of

the comb �ngers.

3. The �eld distribution between the �ngers is the same

as for a comb structure with an in�nite number of �n-

gers. As shown in Fig. 1, the remaining three dimen-

sional �eld problem can therefore be reduced to an elec-

trode arrangement of two half �ngers and the substrate.

The substrate voltage is the boundary condition of the

bottom of the depicted box. For symmetry reasons, all

Figure 1: Elementary comb cell with two half �ngers

other sides of the box have Neumann boundary condi-

tions.

4. The electrostatic �eld of Fig. 1 is decomposable

into several two dimensional �eld problems as shown

in Fig. 2.

Considering Fig. 2, the capacitances of the equivalent

electrical circuit Fig. 3 are given by:

CS = ns (CS1 + CS2 + CS3)

CSM = ns (CSM1 + CSM2 + CSM3 + CSM4)

CM = ns (CM1 + CM2 + CM3)

(1)



Figure 2: 2D �elds in the y-z-, x-z- and x-y-plane

where ns is the number of elementary cells that compose

the investigated comb structure. In the setup of Fig. 1,

Figure 3: Equivalent circuit

the main contribution to the capacitance CSM is due to

the overlapping region of stator and moving comb. The

corresponding partial capacitances are CSM1 and CSM2.

They are products of the overlapping length and the

corresponding per-unit-length capacitances. The latter

are obtained by analytical determination of the 2D elec-

trostatic �eld in the cross-section at x = x2.

In contrast to the other hatched areas of Fig. 2 the

lower part of the cross-section is a three conductor prob-

lem. It can be converted into a two conductor problem.

Setting the �rst of the three electrodes to a �xed po-

tential and the other two to ground leads to a sum of

two capacitances. This procedure has to be repeated

for the remaining two conductors yielding three linear

equations for CS2, CSM1 and CM2.

For the analytical 2D �eld calculations, the method

of conformal mapping is used: In a complex (w = u+iv)-

plane, the electric potential �(u; v) of an ideal plate ca-

pacitor is represented by a complex potential �(w) = w
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Figure 4: Stages of conformal �eld conversion

with Imf�g = � (�rst picture of Fig. 4). By successive

steps, we map the plate capacitor to the originally given

�eld area. Firstly, by

w1 = ew (2)

it is mapped to a split-plane-capacitor (second picture

of Fig. 4). Secondly, by

w2 =
aw1 + b

cw1 + d
(3)

this one is mapped to the upper complex plane but

with the real axis divided into three equipotential in-

tervals (third picture of Fig. 4). Finally, the Schwarz-

Christo�el-Integral maps the upper plane to the initial

problem geometry, the w3-plane (For details about the

Schwarz-Christo�el-Integral we would like to refer to

standard textbooks about complex variables like [1] or

[2].) The last picture of Fig. 4 shows the plot of the

complex potential function that relates to one of the



three two-conductor �eld problems of the lower cut of

x = x2. In opposite to the cutaway view of Fig. 2, the

�eld plot is depicted upside down, with the substrate at

the top and the charged �nger in the lower right cor-

ner. The complete derivation of the mapping function

for the problem shown in Fig. 4 is far to involved to be

included in this paper. However, the mapping function

w3 = w3(w2(w1(w))) is the basis for the calculation of

the per-unit-length capacitances.

In a similar way all partial capacitances of the hatched

areas in Fig. 4 can be expressed by a corresponding map-

ping function that �nally leads to the capacitances of the

equivalent circuit in Fig. 3.

Veri�cation

A veri�cation for the analytically calculated capaci-

tance CSM within the working range of micro machined

comb structures can be seen in Fig. 5. The diagrams

show the the relative di�erences between the analytical

approximations and numerical results versus the hori-

zontal and vertical displacement of the movable comb.

The �rst set of numerical results have been obtained

−1
0

1
2

3
4

1020304050607080

0

2

4

6

8

Horizontal displacement in µm
Vertical displacement in µm

D
e

v
ia

ti
o

n
 f

ro
m

 M
A

F
IA

 i
n

 %

−1
0

1
2

3
4

1020304050607080

0

2

4

6

8

Horizontal displacement in µm
Verticale displacement in µm

D
e

v
ia

ti
o

n
 f

ro
m

 M
E

M
C

A
D

 %

Figure 5: Comparison with MAFIA and MEMCAD

with the �nite di�erence program MAFIA using a high

density net with 600 000 nodes. The used model is

shown in Fig. 1. The second plot is based on calcu-

lations with a boundary-element solver from the MEM-

CAD package using 16 352 panels. Because of the lack

of Neumann boundary conditions the model consisted

of two combs with three �ngers each. Hence, the model

included all stray capacitances of a complete three �nger

comb structure. In order to meet the results of the con-

sidered elementary cell the simulated capacitance values

were divided by �ve.

FORCE CALCULATION

Using Equ. (1), the charges of each comb can be

calculated by:

�
QS
QM

�
=

�
CS + CSM �CSM

�CSM CSM + CSM

��
US
UM

�
(4)

Applying the physical principle of virtual work leads to

the pull-in force Fx and the levitation force Fz.

Fn = �
1

2

�

�n

�
UTQ

�
(5)

Where n stands for either x or z. To remedy the de-

viations of the capacitance functions and to boost the

simulation speed, all three capacitance functions are �t-

ted to a two dimensional polynomial function of x and

z.

All necessary conformal mapping functions as well as

the used least square �tting routines are part of a newly

developed SABER comb model. In correspondence to

the other parts of the BOSCH MEMS library [3] the

comb model is equipped with a general mechanical inter-

face, consisting of 3 translational and 3 angular network

nodes. Altogether they de�ne the relative position of

a corresponding physical point in space as \across" and

the related forces and torques at this point as \through"

variables. The initial coordinates of this interface point,

the comb geometry and the comb position must be given

as model parameters.

The SABER comb model supplies the forces and

torques at the mechanical node by adding up the hor-

izontal and vertical comb forces of each movable comb

�nger. The forces at the comb �ngers are calculated

according to the potentials of the six mechanical nodes

and the electrical �nger potentials, see Fig. 6.

An experimental veri�cation of calculated forces based

on the MAFIA model (Fig. 1) can be found in [4].

SENSOR EXAMPLE

A design for the investigation of new manufacturing

technologies shall serve as an example to demonstrate

the idea of a network-type systemmodel of MEMS struc-

tures. The structure in Fig. 7 is made of galvanically

deposited nickel and was recently fabricated at the re-

search department IMSAS of the university of Bremen,

Germany. The sensor structure consists primarily of

a middle mass which is suspended by four beams and

two rigid trusses on both sides. The middle mass can

be driven into a resonant vibration by the two outer
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Figure 7: SEM picture and SABER Sketch model of a micro machined resonator

Figure 6: Conversion of the segment forces

comb drives. The internal combs are used for the de-

tection of the motion of the structure. Furthermore,

Fig. 7 depicts the SABER Sketch appearance of the

corresponding network-model. The mechanical sensor

part is modeled using rigid mass and spatial beam com-

ponents [5]. The conversion of electrical voltage into

mechanical forces and torques as well as a position de-

pendent comb capacitance is calculated by the discussed

comb models.

CONCLUSION

An analytical model for micro machined comb struc-

tures has been presented. The approach, based on an

analytical approximation of the 3D-�eld distribution be-

tween the comb �ngers, gives an instant answer to geo-

metrical changes like the �nger thickness or the gap size

between the substrate and �ngers. Geometrical changes

on the MEMS models can be completed in a few seconds

and simulated within minutes.
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