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ABSTRACT

This paper describes the development of network-
type models for the simulation of micromechanical com-
ponents such as spatial beams and masses. The mod-
els were coded in MAST® for the SABER® simulator
and their accuracy was compared to analytical solutions
and FEM simulations using ANSYS®. This approach
leads to a library of network-type multi domain compo-
nent models for the system simulation of MEMS, pro-
viding nearly FEM accuracy at network-type simulation
speed®.

Keywords: MEMS, network-type modeling, spatial
beam model, SABER, MAST, general motion.

INTRODUCTION

The design process of commercial MEMS structures
today is commonly characterized by a large number of
foundry runs and time-consuming experimental set-ups
to get a detailed overview of the sensor’s behavior. Sys~
tem simulations that include an accurate physical model
of the sensor would help to accelerate and improve this
process considerably.

The available tools for mechanical simulations can be
categorized into field solvers and muiti body simulators.
The Finite Element codes are the traditional simula-
tors for design investigations on MEMS structures. Due
to their high accuracy they are well suited to calculate
stress distributions, distortions and natural frequencies
of MEMS structures. They are unsuitable, however, to
take into account large scale motion. This domain is the
traditional area for multi-body simulators. Their inter-
nal solving algorithm is based on system energy consid-
erations such as the Lagrange method or the principle
of Hamilton. Although well suited for mechanical sys-
tems, their intrinsic solver excludes the implementation
of other physical domains like electronic circuits or elec-
trostatic fields. '

Network simulators offer a more general system de-
scription. They are well suited for a building-block-
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oriented system simulation. The general approach pro-
vides for the decomposition of a complex micro system
into simpler basic components.

The objective of the presented paper is to provide
basic mechanical elements for a network-type simulator,
implemented using an analog behavioral description lan-
guage. Together with electro-mechanical system compo-
nents a more complex system e. g. an apgular rate sen- .
sor) will be composed from basic mechanical elements.

MODELING OF SPATIAL BEAMS

The description of mechanical beams in the design
of MEMS devices are based on finite element analysis.
Therefore, the mechanical beam structure is considered
to be composed of finite elements. The accuracy of the
simulation is determined by the choice of the particular
approach and the number of elements used. This mod-
eling approach is based on spatial beam elements. The
elastic behavior of a single spatial beam element can be
modeled by a stiffness matrix K, the damping matrix
D and the mass matrix M.

bF=M5£+Dbi+Kbm (1)

Linear and angular displacements of the element nodes
are comprised in the vector 5. Forces and torques act-
ing on the system are represented by vector ,F. All
vectors in (1) are written in a local beam coordinate
system (prefix b), see fig. 1. Mass matrix M and stific
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Figure 1: Beam coordinate system

ness matrix K can be derived from a continuous beam
element. Applying the principle of D’Alembert leads to
mass and stiffness matrices depicted in (2) and (3) 1
[2]. The derivation is based on an abstraction, taking

"into account only the two end points of the beam and

the forces and displacements occurring on them.
Torsion, bending and expansion are considered to be
independent. Such an approximation is only valid for
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small distortions. Furthermore, torsion and expansion
are considered to be linear and the function describing
the center line is assumed to be cubic.

The behavior of the beam element is determined by
the properties of its material (density p, modulus of
elasticity E, modulus of shear G) and the geometrical
dimensions (length 1 and cross-section A). Furthermore,
the torsional moment of inertia J;, the planar moments
of inertia Jy and J, and also the polar moment of inertia
Jp are required for the calculations.

A convenient method [1] to define the damping ma-
trix D is given by:
D =aM +bK a,b = const

4)

Using (4), the damping matrix gets the structure of M
and K. Thus, the damping matrix produces a modal
damping of all natural frequencies.

The form of (1) conveniently represents the type of
equation: needed for a network simulator. The “through”
variables (forces and torques ,F) have to be expressed
using the corresponding “across” variables (linear and
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angular displacements ;z). Such a network-type beam
requires six “nodes” on each end of the beam element
due to the six degrees of freedom in the local beam co-
ordinate system [3].

The reference coordinate system

"The need to describe arbitrary sensor motion in space
requires the definition of a reference coordinate system
fixed to the sensor’s housing (see fig. 2).  Thus, ev-

Distorted
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Figure 2: Reference system

ery beam element needs the position vectors ry, and
T2, in addition to its geometric and material properties.
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They are used to define the undistorted position of the
beam with respect to the reference system. During the
simulation, the mechanical “nodes” hold only the rel-
ative motions r14 and o4 of the beam ends 2s across
variables. The twelve nodes of the network beam, in a
reference environment, represent the forces and torques
as variables in reference coordinates.

Large geometric excursions applied to acceleration
or angular rate sensors can be expressed by a motion of
the reference system 7z and wp relative to the inertial
coordinate system (see fig. 3). The introduction of ref-

Reference
system

Figure 3: Inertial system

erence coordinates requires additional transformations
since (1) is only valid for displacements and forces given
in the local beam coordinate system of fig. 1. According
to fig. 2 the distorted position of beam end 1 can be
determined using:

T3 =TFio +Tid

(6)

The angular position of beam end 1 can be obtained
using Bryant angles &3, 81,%. The three angles form
the transformation matrix , T}, from distorted beam
coordinates (index b,) to undistorted beam coordinates
(prefix bg). The definition of the transformation matrix
b,Ip, can be seen in (5).

The undistorted beam position is obtained using trans-
formation matrix ,T;,. This matrix can be calculated
from the position vectors ry, and 3, prior to simula-
tion iterations. The transformation matrix ,T}, between
beam end 1 and reference system is:

# Ty = 3, T3, 2 T, M

The position of beam end 2 is obtained likewise. Thus,
the position in space of both beam ends can be deter-
mined. To simpiify further calculations, beam end 1 is
chosen as the origin for the local beam coordinate sys-
tem. Hence, beam end 1 is undistorted by definition, see
fig. 4. Then the local position of beam end 2 is given
by:

572 = 5,72 = 5,7 ;2 = 1) = OO

(8)

—cosfy siny;
COS (] COS 7Yy — Sinay sin By sinyy
sIn @y €osy1 -+ cos o sin By sinyy
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Figure 4: Local beam coordinates

Where 4, T, = T3, 7!. The angles between beam end
1 and beam end 2 (g2, Bi2, T12), and therefore the
angular position of beam end 2 in beam coordinates can
be obtained by calculating the transformation 5, T,

1 —72 Bz
0100y = 0, TorTpy & | M2 + @128z —012Bi2mz2 =02 (9
aigniz — P12 ez + Bizmaz 1
Leading to a new ,x:
T
= [00000077 ar2 Bi2 ma] {10)

Damping and inertial properties

The damping of the beam motion is cansed by fluid
and material damping and is based on the velocity of
the movable parts relative to the sensor housing, i. e.
the reference system. Therefore, the derivative of yz
relative to the reference system has to be obtained.

However, the absolute second derivative of s rel-
ative to the ineriial frame is needed to calculate the
inertial beam properties.

The absolute linear and angular acceleration of a
body in a reference system [1] is given by :

a(t) = ’;"*R + (:JR + ::JRz) T+ 20RTr + o (11)

at) = @g + Opw, + W, (12)
Where (*) is the derivaiive in the inertial system and
(7) the derivative in the reference system. Vector rx is
the vector between inertial and reference system and w g
the angular velocity of the reference system (see fig. 3).
Furthermore, the position of the body in the reference
system is given by r, and its angular velocity by w,.
(@b means a x b).

Equations (11} and (12} can be expressed in any co-
ordinate system. Here we need both equations expressed
in the reference system.

According to [1] the angular velocity of beam end 1
in the reference system can be expressed by:

7“:’1 = ?Tbl by T'r (13)



The absolute linear and angular accelerations of beam
end 2 are calculated likewise. This leads to the second
derivative of pz:

™7

bE = [b;Tr ra? b;Tr ra,;[r blTr razT bITr rag] (14)

Equation (11} and (12) contain the time dependent vari-

ables of the inertial motion of the reference system r R
and wp. Thus, they have to be supplied 25 an additionat
input to each beam template with inertial properties.

Using the presented theory, we can use (1) to model
a network-type beam referenced in a moving coordinate
system which is fixed to the sensor’s housing.

Verification of the beam model

A verification of the modeling approach was carried
out using a simple cantilever beam. This test beam

Height of the beam b = 50um

Width of the beam w = 02ppm

Length of the beam I = 160pum

Density p = 2326 kg/m?
Modulus of elasticity E = 1.302 101! N/m?2
Modulus of shear G = 79.62 10° N/m?
Mass m = 3.7216 1013 kg

Figure 5: Cantilever beam for verification purposes

is shown in fig. 5. This simple structure was chosen,
because it is possible to obtain an analytical solution as
a reference. Therefore, the natural frequencies of the
beam have been calculated analytically ([4], [5]).

The longitudinal vibration is described by the partial
differential equation:
roud E 8
—wi{z,t) = ;gz—z

6?52

we(z,1) is the longitudinal displacement. Considering
the special boundary conditions in this case, one can
obtain the well known natural frequencies:

wx{T, 1) (15)

iI\r [E
wk———(k—-z')f ; k—(l,?,...) (16)
Bending vibrations are described by:
82 EJ, &
FEwv(t) = T A A (z,2) a7

wy(z,%) is the lateral displacement in y-direction. Us-
ing J. instead of Jy yields to the lateral displacement

w:(z,t) in z-direction. Boundary conditions result in
the eigenvalue equation coshAycos): = —1 for the spa-
tial eigenvalues Ax. Taking the solutions A, the natural
frequencies are:

_ B, NE _
Wr = pA —L—é— k= (1,2,...) (18)
Torsional vibrations are described by:
8? GJ, &
FEPl.t) = —Eggﬁﬁ(zaf) (19)

@(z.t) is the angular displacement. Natural frequencies

are:
{GJ,
— £=(1,2,...
Y o ( )

INw
W= (k 2) z
ANSYS-simulations of the beam were also done for com-
parison, using spatial beam elements from ANSYS re-
spectively. The beam was subdivided into 100 elements
along its length. With the calculated frequencies it was
tested how close the generated SABER models match
the natural frequencies of vibration. Therefore, AC-
analyses were performed. Table 6 compares the natural
frequencies calculated by ANSYS, the natural frequen-
cies of the provided SABER models and the natural fre-
quencies of the analytical solution. The state errors are
always with respect to the analytical solution.
In the SABER simulation run, the beams witk 2, 4

(20}

~and & elements were stimulated using sinusoidal forces
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F,, #. and torques I,. Because, the center line of the
proposed network beam element is modeled as 2 cubic
function in space, a single element can only reproduce
the first bending mode. For every further mode an ad-
ditional beam element has to be added.

Using this technique, the caliculated frequencies of
the network model correspond very well to the analyt-
ical solutions. Furthermore, the proposed beam model
includes the properties to account for Coriolis and other
inertial forces and torques caused by the motion of the
reference system as well as internal sensor forces such as
electrostatic forces.

MODELING OF RIGID BODIES

It is not always necessary to model all bodies with
elastic properties. For large masses in acceleration or
angular rate sensors it’s a good approximation to con-
sider them as rigid. This approximation can improve
simulation speed considerably without sacrificing much
ACCUTACY.

The properties of a rigid body in space are deter-
mined by its mass m and its moment of inertia J. The
forces F and torgues I acting on 2 rigid body are given
by the equations of momentum and angular momentum:

F{t) = ma(f) {21)



Analytic - ANSYS SABER SABER SABER
Mode | Stim. | Solution | (100 elements) {2 elements) {4 eiements) (8 elements)
[kHZ] [kHz] [kHz] [kHz] [kHz]
1. Py 9.4458 9.438 | 0.08% | 9.247 | 0.013% | 9.442 0.04% | 9.442 | 0.04%
2. Fy 39.196 59.143 | 0.09% | 59.67 0.8% 58.24 | 0.07% | 59.18 | 0.03%
3. Fy 165.750 | 165.606 | 0.00% 166.97 | 0.73% | 165.79 | 0.02%
4. F; 236.144 | 236.007 | 0.06% | 236.2 | 0.02% | 236.02 0.05% | 236.0 | 0.06%
3. F, 324.803 | 324.539 7 0.08% 329.39 | 1.39% | 325.40 | 0.18%
6. F, 536.923 | 536.564 | 0.07% 539.82 | 0.54%
7. I 721.484 | 731.106 | 1.219% | 740.14 | 2.52% | 726.13 0.64% | 722.70 | 0.17%
8. Fy 802.070 | 801.737 [ 0.04% 811.28 | 1.14%
9. Fy 1120.25 | 1120.0 | 0.02% 1142.1 | 1.91%
10. F, 1479.89 | 1480.0 | 0.01% | 1485.6 | 0.38% | 1478.7 0.08% | 1477.8 | 0.14%
11. Fy 1401.45 | 1519.8 | 1.90% 1517.2 | 1.7%
Figure 6: Modal analysis
I(@) = J(t)ex(t) + &(8) T (thw(t) (22 across (node) variables and the corresponding torgues

Using (21) and (11), we get suitable equations for cal-
culating the forces acting on a rigid body. All vectors
are expressed in the already introduced reference system
(see fig. 2).

rF =Tm (P;'-R -+ (réR -+ 1-5:’32) e+ 2?‘:’-& 7'7.‘1‘ + TFT‘) {23)

Vector ,r defines the linear position of the mass with
respect to the reference system. .

Equations (21) and (22) are valid in any coordinate
system. Equation (22) however, should be expressed in
a coordinate system which is fixed to the mass itself.
The coordinate system fixed to the mass (prefix m) is
the only one in which the matrix of the moments of
inertia J is time independent.

oL =,Tn (mJ MmO+ & mw) (24)

+Im describes the coordinate transformation from mass
to reference coordinates and is a function of the position
angles (a, 3, 7).

The disadvantages of a mass coordinate system are
the necessary transformations for the absolute angular
velocity w and acceleration mCx.

mw = rTm-lr(dR + mr (25)
mQ = @R + @R s + (26)

The angular velocity .w, of the body with respect to
the reference system can be calculated directly using the
angles ¢, # and « connected to the mass model.

cosScosy siny O a
mWr = | —cosB3siny cosy 0 B (27)
sin 3 0 1 4

In contrast to the previously described beam model, the
network model of a rigid body needs only six mechan-
ical wires, representing the six degrees of freedom as

and forces as through (conserved) variables. In addi-
tion, we need again the knowledge of the motion of the
reference system ,.? and .wp with respect to the iner-
tial frame in reference coordinates. Thus, we define six
visible “wires” for the position in reference coordinates
and six invisible “wires” for the inertial motion.

SENSOR EXAMPLE

A recent design of an angular rate sensor shall serve
as an example to demonstrate the idea of 2 network-
type system model of MEMS structures. The SEM

Figure 7: SEM of an angular rate sensor structure

image fig. 7, shows an angular rate sensor design, re-
cently under investigation at the BOSCH research lab-
oratories. The mechanical sensor consists primarily of
a flat movable polysilicor structure which is suspended
by two beams in the center of the element. The “rotor”
can be driven into resonant vibration about the vertical
axis by four comb drives located on the outer edge of the
structure. If an angular velocity is applied perpendicu-
lar to the vertical axis, the rotor responds with a tilting
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Figure 8 SABER system model of an angular rate sensor

oscillation due to the principle of conservation of angu-
lar momentum. The tilt oscillation has the frequency of
the in-plane motion and an amplitude proportional to
the appiied angular rate. This motion can be detected
by underlying electrodes.

The whole sensor system, including readout electron-
ics, can be modeled using a network simulation tool.
Fig. 8 shows a SABER model composed of reusable elec-
tro mechanical components. The rotor is modeled as
the above described rigid body. Each of the two beams,
which form the rotor suspension, consists of two beam
elements. In addition to the six terminals, which con-
nect the beam and mass symbols, there are six invisible

“wires”. These wires carry the information of the sensor

motion in the inertial frame to every symbol with iner-
tial properties. They have their origin in the symbol
“Motion of the reference system?”.

Symbols for the detecting electrodes, comb drives,
damper and readout electronics complete the model of
the angular rate sensor.

CONCLUSIONS

The applicability of the introduced modeling approach
to include mechanical components into the system sim-
ulation with SABER was shown using an angular rate
sensor as an example. The approach gives an accurate
description of the complex static and dynamic behavior
of mechanical structures composed of spatial beams and
rigid body elements. The --plication of the described
methods in addition to electrostatic comb drives and ca-
pacitive readout circuits is discussed in a separate pub-
lication [6).
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