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ABSTRACT

Modeling of sensor devices has to take into account not only
variable voltages and currents but also variable device
parameters. This makes transient differentiation and
integration more complex than for circuits with constant
device characteristics. The problem is increased when
behavioral models allow for unrealistic idealizations such as
discontinuous functions. To obtain convergent solutions that
make sense we must understand the little differences between
what we want to do, what the software can do, what it will do
and what we have simulated at the end.
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I. INTRODUCTION

During the development of a VHDL based mixed signal
simulator [1] the anthors had the chance to see the problem
of analog and mixed signal simulation from three points of
view: (1) HDL specification, (2) software development and
(3) software application. This communication intends to give
the user insight in those problems of software development,
that might have effect his modeling work.

A distinction between micro modeling and macro modeling
is made by assuming that micro modeling is done by the
software developer and macro modeling by the user of the
tool. It was found to be advantageous when both sides had
" some understanding of the problems, goals and limitations of
the other.

Chapter II illustrates difficulties arising from the transition of
the infinitesimal expression s'(t)=ds/dr to it’s finite
differences approximation s'(f)=(s(t+A)—-s{1))/k. As
market emphasis is on capacitive rather than inductive
Sensors, test setup for simulation tools are proposed for
circuits containing capacitors. Transfer to inductors is
straight forward.

Chapter 1II illustrates limitations of time step selection and
Chapter IV lists some desirable features of macro model
behavioral waveforms.
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II. COMBINING MICRO AND MACRO MODELS

A. Shape Functions
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Figure 1: Different shape functions connecting discrete
points
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The representation of an arbitrary function on a computer is
done with a finite number of discrete points. To define the
function between these points an agreement regarding
interpolation must be found. This is typically done using
shape functions.

Fig. 1(a) shows five possibilities, labeled (c-g), to realize the
transition between two timepoints using straight lines.
Fig. 1(b) shows a user defined quantity, (e.g. voltage,
current, resistor, capacitor, inductor, etc.). The simulator
samples the waveform of Fig. 1(b) by evaluating the function
for a set of time points. The selection of these points is due
to the global situation. Figs. 1(c-g) show the shape of
simulated pulses according to the transition schemes shown
in Fig. 1(a). Obviously, there are differences between the
user’s intention and the simulated waveforms. Fig. 1(h) uses
a second order polynomial to yield a continuous first
derivative. The oscillation illustrates that more continuity
does not guarantee more accuracy. It can accidentally deliver
acceptable (dashed line) or unacceptable results (solid line).
In Fig. 1(i) oscillation is caused by a discontinuous first
derivative. Non-linear polynomials carry the risk of
oscillation and so the risk of negative integrals for some time
steps as shown in (h,1), which may be physically impossible.

A discontinuity can hardly be modeled with a continuous
function. As derivatives are also functions, the order of
continuity of a macro model (waveform) defined by the user
should be equal to or larger than the shape function’s order
of continuity. This suggests simple, linear shape functions.
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Figure 2: A simple circuit but difficult for shape functions.

To find a physically consistent shape function consider the
LC circuit in Fig.2. Let L, C be constant and make the
following assumptions:

1. Voltages U(t) are modeled using n™ order polynomials.

2. As the current through the inductor, I (t), is obtained by
integration of UL(t), polynomials of order (n+l) are
required for current shape functions, Ij (t).

3. As the voltage across the capacitor, Uc(t), is obtained by
integration of I¢(t)=I(t), polynomials of order (n+2) are
required for the voltage shape functions, U(t).

Obviously, points 1 and 3 are contradictory for a finite
order n. Could an exponential shape function be a solution?
It is difficult to handle, has problems with constant slopes,
Tequires continuity conditions, etc. These arguments are

contradictory to the need for simple, linear shape functions
These problems arise while modeling primitive situations

Analog circuit simulation tools integrate a signal g, )
represented by a number of discrete points S, =5(t,) either
with the linear backward Euler integration formula

Spel =Sp T H- Sy e))
or with the second order trapezoidal model

S =s,,+h~(s,;+1+s,'l)/2 )

n+l
Both models are stable for any timestep >0 [2]. The
trapezoidal model uses the signal derivative of the last time

point, s,. So it assumes a continuous first derivative.

B. Charge Conservation for Variable Capacitors

Sensors typically transduce a variable physical quantity into
a variable electronic device parameter such as resistance,
capacitance or inductance. The simulation of time dependent
electronic component characteristics is more complicated
than computing constant components. Fundamental laws of
electricity deliver U, = R- 1y for resistors, O~ = C-U for

capacitors and @; = L-/; for inductors, where U,/,0Q and

@ represent voltage, current, charge and magnetic flux,
respectively. Simple differentiation delivers
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Figure 3: (a) Variable capacitor, (b) log(Uc) Vs log(C)
with I =0, (¢) C() and (d) U (z) ordistance da().
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Consider the capacitive sensor in Fig. 3(a). Charge it using
Ic and then set I-=0 to obtain constant charge

Ue = CU_ . The logarithm of this formula defivers

log{U ¢ (1)) =log(Qc ) ~ log(C(2)). (6)

With constant charge O, and variable capacitance C(r) the

above equation produces a line as indicated by the solid line
in Fig.3(b). In cases where charge is being lost, the
characteristic is indicated by the field denoted by dashed
lines in Fig. 3(b).

Charge conservation is a difficult task for the simulation of
capacitive sensor devices. Discretization of Eq. (4) delivers
the finite differences expression

AU AC
CtUp g — = 0

creating the problem of proper selection of CoUes-
Applying the boundary condition I~ =0 we find

Ue s

AU =~
o

AC. | (®)

Due to the conservation of charge, stepping the valve of C
back and forth by AC results in 2 corresponding variation in
voltage as shown in Fig. 3(c), Therefore, the error:

U U
AUC-“T = C.eff .2 C.eff.1 c. (9)
Cqa  Copu

has to be minimized. This requires in the specific situation of
Fig. 3(c) that

Ucef 2

- U Cefl (10)
Ce.tT.z Ceﬁ.:

However, if C returns back to the same value after several
steps, such an easy model as Eq. (10) is no more possible.

To test a simulator we charge a Capacitor C,_,. modeled as

Coons = Gl —202)) (11)

to a constant, non-zero charge and apply a transient £(z).
The condition C,,; >0 must be fulfilled. For symmetry
reasons, symmetric waveforms may cause error cancellation.
A model that forces any simulator to its limits will result in
oscillating capacitor values according to Fig. 4. A sinusoidal
signal is weighted with a hyperbolic tangent step.

£(r)= %[H tanh _:" :l-sin(co(z) -1). (12)

When £(2)~>1 then Coens(t}2>0  and therefore
Uc(t)=0c/C,ns(t) = = . This sitwation is difficult to
simulate while conserving charge. To avoid error
cancellation due to symmetries, the sinusoidal signal in

Fig. 4 is modulated such that the falling edge is three time
faster than the rising edge.

time

Figure 4: oscillating capacitor approaching zero to test the
simulator’s charge conservation capabilities.

C. Accuracy Considerations

To simulate accuracy, resolution, linearity, etc. of 2 sensor,
we should first know the respective limitations of our tool,

Accuracy is difficult to define. For a signal s(z) oscillating
with amplitude A around an offset B according to

()= Asin{wt)+ B (13)
a relative accuracy can be defined as

| Al
A B

Cp= < relacc. (14)

Especially problematic are oscillations around B =0. This
situation is expected for U, (z) in Fig. 5(b). In this case
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Eq. (14) will always indicate 100% inaccuracy. Oscillations
due to truncation noise can hold a solver in an endless loop
when trying to fulfill a given relative accuracy criterion. For
this case, an additional absolute accuracy requirement

¢, =AIS absacc (15

must be fulfilled. To check this two accuracy criteria, the
Gaussian weight

(r—1,)2
G(t,r,0) = —_— 16
(1,15.0) BXP[ Y J (16)

is applied as a2 window function to a sinusoidal oscillation
according to

SO =1 [G(1,15,0) - sin(ar) + B]. an

In Fig. 5(a) horizontal lines indicate the amplitude below
which U¢ or U; do not follow the input signal any more

because one of the accuracy criteria masks their activity.

Applying s(#) according to Eq.(17) with B=1 to the
circuit in Fig. 5(b), U (z) and U .(?) oscillate around 0 and
1V, respectively. Then, U, U, allow one to observe when

a signal is considered to be constant due to the absolute and
the relative accuracy criterion, Tespectively.

RC=w™" = R/ L is recommended.

If the above mentioned data about accuracy criteria is
urknown, then it may be assumed that 2 sensor does not
work while in fact an accuracy criterion masks its activity.

Figure 5: (a) Gaussian shaped sinusoidal waveform with
offset and indicated bandwidth of accuracy tolerance.
(b) With B=1V, the voltages U, U allow one to check

the absolute and relative accuracy, respectively.

The truncation noise in the simulator can be seen from the
maximum amplitude of a signal s(r) according to Eq. (17)
with B=1, while another signal s,(z)=s(r) -1V remains
5,(t)=0. Typical real number precision are some 7 or 15
decimal places, depending on the compiler,

The minimum absolute signal value that can be represented
on a given simulator can be observed with a signal s(z)
according to Eq. (17) with B =0. The Gaussian weight will
suppress any signal activity after some time. Typical absolute

real minima are some 107 or 10739,

Table 1 gives the damping effect of a Gaussian weight
relative to its maximum in standard deviations (¢ ) from the
maximum. Checking for absolute resolution we should keep
in mind that some simulators can represent numbers down to
102% (. 3760) while other simulations allow for

numbers down to down to 107 (ie. 1320 ). When
computing relative accuracies we see from table 1 that a
mantissa length of 15 or 7 decimals produces truncation
noise in the order of 830 or 570, respectively.

Table 1: Damping effect of a Gaussian weight

x-X —xy)?

p s Glx,x5,0) = exp[(xz—;?)—]
0 1
i 0.6065

5.7 107

8.3 1077

13.2 10

37.6 107°%

D. Hysteresis

Fig. 6 shows U, U, following s(f) of Fig.5(b) stepping
from 0— 1V and from 2V — 1V . An accuracy criterion that
indicates convergence dependent on a sufficiently small step
AU may cause hysteresis. The effect is increased when a

soft step is generated by a dependent source s((U Jr(t)),
where 17, () can be the output of an RC circuit.

-2
Figure 6: u 1 M
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IOI. FINitE TvxE STEPPING

A. Numerical Efficiency Considerations

Numerical efficiency depends strongly on appropriate time
stepping. Larger time steps are, together with accuracy and
stability, important reasons to use backward instead of
forward Euler integration, even though the numerical effort
of solving implicit equations in any time point is significantly
higher.

More versatile time stepping is also one of the driving forces
for the development of simulation techniques like block
tteration, waveform relaxation or event driven simulation. To
achieve numerical efficiency any simulator must try to solve
a problem within a given accuracy using a minimum number
of time steps.

The computation of time steps depends typically on slope
and/or bending of a curve, i.e. on its first and/or second order
derivative. Therefore, a constant signal with s'=5"=0 is
difficult for time step computation.

B. Directly Controlled Waveforms

Some simulators allow for a specific set of functions to be
used as stimuli. In this case omission of events as illustrated
in Fig. 7 can be excluded because the simulator has the
information about critical time points.

If the user can define an arbitrary function which has to be
sampied by the simulator, a time-step prediction model will
return a maximum time step if all derivatives are zero or very
close to zero as illustrated in Fig. 7(a). If a large time step
reaches over the edge of a stimuli signal, e.g. in the interval
hy=t3~1, in Fig7(a), the simulator can realize that
something has happened. It can locate the event more exactly
for exampie by interval division. However, much
computational power is needed to distinguish a small
discontinuity as shown in time point t, in Fig. 7(a) from a
fast edge. In such cases it is helpful when the user can force
the simulator to compute solutions in specific time points.

@) (&)

Figure 7: (a) Time stepping from constant signal values is
difficult. A step function can always be recognized. Spikes
my be omitted. (b) Test circuit to integrate current spikes.

Even more problematic are thin spikes as swallowed by the
intervals A =t,—1y and h, =1,-1, in Fig. 7(a). The
simulator has no chance to detect the omission of the pulses
when only the data computed in the time points Iy,z;,2, is
available. If the user cannot give hints, the maximum time
step must be chosen small enough to detect the pulses. An
example of such pulses are current spikes coming from photo
diodes receiving very short laser puises.

A simulator’s reaction in the situation described in Fig. 7(a)
can be tested by integrating current pulses into 2 capacitor as
illustrated in Fig. 7(b). An appropriate test function for the
currznt spike is the derived hyperbolic tangent pulse

Is(z)=1—5°-[1—mnh2ﬂ). (18)
T T

This pulse, similar to the Gaussian curve, has an infinite
number of derivatives and a known closed form znalytical
solution:

S
(v I 11,
UCi(r)=JJé,th’=*é%(I+mh T") (19

To check the relative accuracy of the integration of the
current spike in Fig. 7(b) the difference between the
numerical (index ‘num’) and analytical (index ‘ana’) solution
is computed:

_ Yeians ) =V mum(®) (20)

Utiana (D)

E

relace

The simulation time points of the problematic events
discussed in this chapter are foresesable. If the user has the
chance to give information to the simulator about critical
time points, the solver's task can be significantly facilitated.

C. Indirectly Controlled Waveforms

Also a simuiator that has a limited set of available stimuli
functions and thar allows the user to give hints about crucial
time points can be operated in situations which are difficult
for a time stepper to handle.

Fig 8(a) shows a circuit frequently used to measure micro
machined capacitors. The current I, begins to charge a
capacitor Cg while the MOSFET M has a high input
impedance. The linear rise of the voltage U s across the

capacitor provokes the simulator 1o use large time steps.
When U, exceeds the reference voltage U, the

operational amplifier triggers the monostable MF that
switches the MOSFET to a low impedant state. In this time
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point the time constant of node n; changes rapidly and the
capacitor is discharged to a near zero voltage. In the ideal
case At=1,—# =0 would be expected in Fig. 8(c). Care
must be taken to distingnish between that part of Ar that
results from device delay and the other part that results from
the time stepper’s inaccuracy. Let 1, be the time point of
the monostable’s Iast falling edge. The noise in
lrise =12 —lopy  Originating from the time stepper’s
inaccuracy can be made visible by plotting Up, versus

t*= I—IOIGSI .

‘ UCs ’ =.“:‘»
- ——1U

ls "

':‘

ip te

voltage

appended by (b)a
controlled current source. (¢) Voltages and current vs. time.

Figure 8: {a) Oscillator

Although the kink in t, is difficult to determine exactly, a

valid simulator will always note that an event has occurred.
More difficult to find is the current peak in z=1, which is

modeled again using a derived hyperbolic tangent puise:

Is(D) = s0( ) annz Y =Us Uge () 1)
U, U,
with U, <<U,, and with Qg being z constant. To

distinguish accidental from systematic inaccuracies, U,
should vary slowly between 0 and U ref While several

periods of the oscillation are simulated. If U, =0 then

Is(f)

Uelt) =j

‘0

= QSU ([anh UC:(t)—UO —tanh UCS(IO)—UOJ‘ (22)
C,

i k U: Uz‘

- A figure of merit is computed from the difference between
the known analytical result and the numerically computed
voltage U (z). (The definition of a relative error would

require to specify a U > 0.) The ideal is U Cierr =01

UCi.err = UCi.mzm (t) - UCi.ana (I} (23)

To obtain a figure of merit for charge conservation and/or
accuracy of numerical integration the numerically performed
integral over the current through the capacitor Cs is

compared to the known charge in Cg. In the ideal case
Occerr =0 should be found:

Ocverr = | Lo non?)=Cs (U ()= U 1)) 24)

‘o
IV. FIVvE DEMANDS FOR ANALOG MODELING

Analyzing a number of practical situations we would like our
test functions and simulator to fulfill the following five
demands: (1) A zero input signal should be really zero and
not any tiny value e.g. from an exponential function. (2) We
would like to have an infinite number of continuous
derivatives all over the ‘abscissa, (3) have control over the
first and/or second derivative in specific time points and
(4) be able to request solutions exactly in user specified time
points (5) We would like to know the waveform’s integral
from analytical calculus.

The tangent step was proposed by Vogelsong [3]. More
detailed investigations about analog waveforms suitable for
behavioral modeling will be published elsewhere [4].

V. SUMMARY

A number of problems coming along with numerical
modeling and simulation of arbitrary analog signals were
pointed out. On the basis of these difficulties circuit setups
are proposed that allow to test a simulator’s capability in
handling such situations.

References

1 M. Schubert, *“Mixed Analog-Digital Signal Modeling
Using Event-Driven VHDL", X Brazilian Symp. on
Integrated Circuit Design- SBCCI'S7, Porto Alegre,
Brazil, Ang. 25-27, 1997. '

2] William C. McCallz, Fundamentals of Computer-Aided
Circuit Simulation, Kiuwer Academic Publishers, 1997.

i3] R. 8. Vogelsong, “Tradeoffs in Analog Behav. Model
Develop.: Managing Accuracy and Efficiency”, BMAS,
Washington, 1997.

f4] B. Gonzdles, M. Schubert, “Analog Waveform Behavioral
Modeling™, submitted to SBCCI'98.

319



