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I. ABSTRACT

A new approach to design high performance mi-
crosystems is proposed. It is based on the association
between a low-cost sensor array and a multidimensional
signal processing technique: the so-called blind source
separation’. In order to illustrate the effectiveness of
the method, we applied the source separation process-
ing for a Hall-type silicon sensor array in order to cancel
the temperature cross-sensitivity and spurious magnetic
field sources crosstalk. A microsystem prototype includ-
ing the Hall sensor array, condit:onning electronics and
a DSP running source separation algorithm is currently
designed.

Keywords: Hall-device sensor array, source separa-
tion, cross-sensitivity cancellation, crosstalk cancella-
tion, smart microsystem.

II. INTRODUCTION

One of the main goals of smart microsensor design
is to eliminate the cross-sens:iivities and the crosstalk
which are major drawbacks for providing higher accu-
racy and higher resolution sensors [I]. Classical solu-
tions are the so-called ’sensor within a sensor’ (com-
pensation method) and tailored correction method [1],
[2]. In this paper we propose a new approach in or-
der to design low-cost high performance sensor systems.
The method is based essentially on the association of a
low-cost senssr array with a fairly new signal processing
technigue: th- blind source separation.

Blind scurce separation {BSS) consists in recovering
unobserved signals (the sources) from ebserved mixtures
(typically, outputs of an array of sensors) without know-
ing the mixing coefficients. Many theoretical results and
practical algorithins are now available according to this
approach [3], [4], [5], [6]. [7], [8]. Provided that there are
at least as many sensors as sources, these algorithms es-
timate simultaneously unknown sources from observed
mixture. Thus, using a sensor array, the source separa-
tion methods are good candidates to cancel the sensor
cross-sensitivities and the sensor crosstalk (due to a few
spatial sources of same type).

In this paper the source ser ration method is ap-
plied to a Hall-type silicon sensor array, but it could be
applied for any type of sensor array.

III. SOURCE SEPARATION
A. The basic model

The problem of source separation, appeared in 80’s
[3], [4], is often called ’blind separation of s -5’ be-
cause very weak hypotheses, either on source  aalsor
on mixtures, are assurned.

In alarge number of applications, the signal delivered
by a sensor is an unknown superimposition of the various
sources: this is the case for a microphone, an antenna or
more generally any other sepsor. In the simplest case,
the output signals z;(t),(i = 1,---,n) of a sensor array
can be consider as instantaneous {memoryless) mixtures
of m unknown (unobserved) source signals s;(t),(j =
I-+-,m)

zi(t) = aysi(t), i=1,---,n )
i=1

For sake of simplicity, assume that the number of
sources is known and is equal to the number of sensors
ie. m = n (the case m # n will be discussed later).
Equation (1) can be expressed in a vectorial form as:

x(t) = Asl(i) (2)
where x(t) = [21(1),-- -, zn(t)]7 is the observation vec-
tor, s(2) = [s51(f),- - -, $4(2)]” is the unknown source vec-

tor and A is a square n X n mizing matriz with unknown
scalar entries, a;;. A source separation algorithm con-
sists in estimating a »n x n separating matriz W ~ A™*
whose output:

¥(t) = Wx(t) = WAs(?) (3)

should be an estimation of the vector s(t) of the sources:
¥(t) = §(1) (Fig. 1).

The following problem arises: how a BSS algorithm
can estimate (recover) the original sources, y(t) = 5(1),
and the separation matrix, W & A%, from the obser-
vations x(t). The lack of any knowledge about mixture
is compensated by the assumption of stafzstical inde-
pendence between the source signals, s;(¢). This seems
& strong assumption but it is very realistic in this con-
text. Independence can be expressed in terms of proba-
bility, but it also means simply that knowing s;(2) does
not give information on s;{(t), 7 # ¢ (s:(8), s5(t) ar-
rise from different physical sources). For example, two
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speech signals coming from two persons are statistically
independent, and two different magnetic sources emit
two independent magnetic fields. Hence, a BSS algo-
rithm estimates W by optimization of an independence
criterion for the estimated sources, y(t). In other words,
the separation is achieved when the estimated sources
become mutually statistically independent.

The independence criterion is based onr the inde-
pendence definition of the multivariate random variable
¥ = [y, -, ]¥. The components y;, i = l,---,n of
y are independent if the joint probability distribution
py(u) is equal to the product of marginal probability
distributions py,(u;):

w) = [T oy @
f2l
Thus, the independence can be measured by the dis-
tance’ between the joint probability distribution and the
product of marginal probability distributions, such as
done by the Kullback-Leibler divergence, also called mu-
tual information:

py(w)
uYogms————du
1= [ py(wtore i )
It can be easily shown that (5) is positive, and equal to
zero if and only if (4) is satisfied. Then, (5) is a simple
theoretical independence criterion whose minimization
with respect to the W leads to output independence.
Minimization of (5) requires the knowledge of the den-
sities py,(u;), which can be approximated by a2 Gram-
Charlier expansion [9], [10] or directly estimated [11],
[12).

Another approach 15 based on the cha.racteristic func-
tions of the random variables y;,i = 1,---,n. The first
characieristic function is defined as the Fourier trans-
form of the probability distribution py, (w):

+ o0 .

o) = [ e p ©)
-0

and the second characierisiic function as the logarithm

of the first characteristic function:

Ty (w) = log(®y. (w)) ]

Applying (7) to the definition (4), the independence of
two random variables y; et y; (7 # j) writes:

i .
Ty(w) =D Wyi(w) = 0 : (8)
i=l
By expanding (8) in Taylor series, the independence con-
dition requires the zeroing of statistical quantities which
are easily expressed by statistical moments, the so-calied
cross-cumulanis [13}, [9]. :
Let us note that the independence criterion, specific
to BSS problem, is much more powerful than a decor-
relation criterion, and generally involves the use of the

high-order statistics (higher than 2) of the estimated
sources [6], [13].

x{t)
yi{t)= &t}
xztt) 2 :
> SOURCE vit)= §=(t)
x(t) | SEPARATION
W :
)= §ie)
®ik) z =
a
algorithm |
baged on | |

Fig- 1. Schematic dizgram of the basic BSS mogel {n = m},

There are several issues in the blind source separa-
tion problem. The main issue is the existence of two
inherent indeterminacies in the solutions. In fact, the
observed mixtures z;(t),i = 1,---,n are not modified
by scale changes and permutation:

st =3 eas® =2 T eomen®) )
j=1 e

j=1

where ¢o(;) is a constant and o{.) is 2 permutation on

1,-+-,n. Therefore, the sources cannot be exactly esti-
mated, but only up to a permutation and a scale factor:
y(t) = PDs(t) (10)

where D is a n x n diagonal matrix with non-zero entries
and P is a n x n permutation matrix. It means that W
is not the inverse of A but verifies:

WA = PD (11)
W =PDA"! (12)

Although the indeterminacy seems to be a severe limita-
tion, in a great number of applications it is not essential
if the relevant information about source signals is con-

.tained in their waveform shape. On the contrary, if the

magnitude of source signals is needed, then a calibration
is required.

Another issue is the implementation strategies of
source separation algorithms. For instance, the esti-
mation of the separation matrix W can be performed
‘on-line’ by an adaptive (e.g. neural-type) algorithm or
‘off-line’ by a batch algorithm. The choice depends on
the application: in real-time applications, for example,
an adaptive algorithm is required.

B. Eztensions of the basic model

In practical BSS applications, the basic model (1)
is often too simple or its assumptions are not realistic.
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Various extensions of the basic model are discussed in
this section. '

» More/less observations than sources {n # m). In
real-world applications the source number can be un-
known and time-variable. However, many BSS algo-
rithmas are particularly efficient if the number of sources
is equal to the number of sensors. There are two possible
situations:

a) With more sensors than sources (n > m), a first
step consists in estimating the source number m. Then,
a whitening stage can transform the n observations into
m uncorrelated observations, with the best signal to
noise ratio. This problem has been intensivelly stud-
led in signal processing and many solutions are available
[14], [15]. A m-size source separation algorithm, Jocated
after the whitening stage, is then very efficient.

b) With less sensors than sources (n < m) the rrob-
lem is especially problematic because the observations
x(%) do not contain enough informatior for exactly sep-
arating all sources. The n most powerful are estimated,
but with a distorsion due to the m — n other sources.

® Noisy observations. Equation (1) corresponds to
an ideal semsor output. In the realistic case, there is
additive noise at each sensor output (electronic noise,
for example):

m

i)=Y ays;(Ey+nift), i=1,---,n (13)
i=1
x(t) = As(?) + n(?) (14)

Usually, the noise can be supposed uncorreiated with
the observations. However, even if W can be perfectly
estimated, there is always a remaining noise component,
Wa(?), in the estimated sources:

¥(t) = Wx(t) = WAs(t) + Wn(t) {15}

Experimental results confirm that additive noise de-
creases the source separation performance. Howaver,
if n 3> m, it is possible to improve the SN R by a pre-
processing (projection in the signal subspace). Other-
wise, noise reduction 1 =t be applied after the scurce
separation stage.

o [ll-conditionned muriure. In an integrated sen-
sor array application, the mixtures can be very sivailar
(the mixing matrix is then ill-conditionned). The so-
called eguivariant source separation algorithms 5], [6}
can overcome this problem. Another solution is to de-
sign sensor array which has a good spatial diversity, e.g.
by choosing various geometry or orientation of sensors.

* More complez model of miztures.

a) tinear convolutive. In more realistic model, linear
filtering between sources and sensors must be taken in
account:

x(t) = A(t) *s(?) (16}

where A(?) is a matrix whose entries are filters and =

denotes convolution. For instance, assuming FIR filters
of order p, (16) becomes {7]:

m p-—1

1:5(‘!):22&;_-;(16)35@—&), i=l--,n (17)

i=lk=0

b} nonlineer. The more general problem of nonlinear
mixtures has been recently adressed, and efficient algo-
rithms have been proposed {8], {12] for the so-called post
non-linear mixtures: '

z:(t) = fi (Z a:j$; (f)) (18)
j=1

where f;(.) is any unknown inversible non-linear func-
tion.

* Use of prior information. Any additional informa-
tion on the sources can be often used to improve the
separation results or to simplify the algorithms J16].

C. BSS aproach to low-cost high-performance semsor
microsysiems

Source separation approach appears as an attractive
method for designed smart sensor array, able to increase
spatial selectivity and to cancel the cross-sersitivity. Up
to now, this class of algorithms has been mainly used in
telecomunications, speech processing, biomedical signal
processing applications. For the first time, we have ap-
plied it in the case of integrated sensor array (to design
low cost high performance Hall-type silicon sensors}.
The analytical model of Hall-device cross-sensitivity is
presented in the following section. This study is neces-
sary to chose the suited model of mixtures.

IV. HALL-DEVICES B-T CROSS-SENSITIVITY

The sensor array used in our application is based es-
sentially on silicon Hall-plates with various geometries.
The principle of a Hall-plate sensor is given in Fig. 2:
when the device is placed in a magnetic field, B, per-
pendicular to its surface, a Hall voltage, Vigay is sensed
between the lateral contacts {Vg4, Vi_).

The Hall device sensitivity (i.e.S5 = dVian /dB)
varies with the temperature and/or stress (cross-
sensitivity), thereby reducing measurement accuracy
[17). Figure 2 shows typical Hall voltage (Vian) as a
function of the magnetic field, B, with the tempera-
ture, T, as a parameter. Systematic measurements are
made on silicon n-type Hall plate with different geome-
try and on MAFGFETSs (both CMOS compaiible) and
it is found that B and T influences on Vig.y are well
modeled by a conventional simple relation {1}

A
Vaen = ﬂn(T)GIVB‘f'Voff(T) (19)

= (#nngG%V)BT"" + Vo_ff (T)
EBT™Y 4+ Vo5 5 (T)

i
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where V,s¢ is the offset voltage, Z and L are the Hall
plate width and length, respectively, un, is the carrier
mobility at Ty = 273K and V is the applied voltage.
It is experimentally verified that in deduced sensitivity,
S = kT~7, the + coefficient mirrors mainly the tempera-
ture dependence of carrier mobility in doped silicon and
it is less influenced by sensor geometry. Note that for
small temperature variations (AT up to 20-40K) a lin-
ear approximation can be assumed: Vi.p (o = BT,
where coefficients « and 5 are determined for a given
range of temperature. With this hypothesis, for a given
sensor, differenciating equation (19) and neglecting off-
set contribution gives:

dVean (=BkB)dT + k(e — BT)dB
. daT
(—ﬁkB mlg-)ﬂgj*

(20)

dB
+((a_ﬁr)km1T)vﬂB

where vy, vgp are the equivalent induced Hall voltage
(’signals’) if T and B vary, respectively. The equation
(20) is similar to the source separation data model (1)
and for a Hall sensor array, it can be written as:

(21)

where the a;; and a;; are the cross-sensitivity mixing
coefficients. It means that the cross-sensitivity can be
modelled by instantaneous linear mixtures, and that
source separation algorithms should be efficient to can-
cel it.
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Fig. 2. Hall voltage, Vg, as a function of the magnetic field B,
with the temperature as a parameter, for a conventional Hall
plate. Inset: Hall plate schematics

V. SIMULATION RESULTS

The microsystem architecture which is currently de-
signed is given in Fig. 4. Its performance was validated
by the simulations depicted in the following.

After individual sensor behavior evaluations as func-
tions of the magnetic fieid {up to 400mT") and temper-
ature (—100°C up to +100°C), sensors with different
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Fig. 3. Measured and simulated semsitivity, § = dVg4; +5/dB, for -
two different geometry magnetic sensors (Hall-plates *A’ and
'B’} 23 a function of temperature

geometry were selected (to avoid a ill-conditionned mix-
ture).

In the simulations, we consider a sensor array with
six Hall-plate, and three independent sources: a tem-
perature source T'(¢), slowly varying, and two magnetic
sources, B1(t} and B2(t) (coming, for example, from
turning machines) (Fig. 5). Using the B — T cross-
sensitivity model {21), we simulate the mixed signals,
taking also into account the additive noise, mirroring
offset and sensor electronic noise (Fig. 6). _

Of course, the source separation algorithm processes
only the mixed signals that appear on the sensor out-
puts.

Simulations were running on a SUN SPARC sta-
tion, but requires a weak computation power. ‘After
the source number was estimated, the sources are sepa-
rated on-line after a short convergence time (a few ms),
with a remaining crosstalk of about —25d8 to —30dB.
Figure 7 shows, as explain in section III.A, that sources
are estimated up to 2 scale factor and a permutation.

Vi. HARDWARE IMPLEMENTATION ISSUES

" It is obvious that the performance of a source sepa-
ration algorithm, running on a computer (32 bits, float-
ing point computations) can be substantially different
compared to those of an IC which performs the same
calculations with a lirnited aceuracy.

The problems arrising when a hardware implemen-
tation is desired are the following:

o the technology choice {analog/digital VLSI). Source
separaiion algorithms have been successfully imple-
mented in analog CMOS VLSI [18], {19]. This can be a
very atiractive approach for ’integrated smart semsors’
since the corresponding sensor can be designed and fab-
ricated using the same technology as for the source sep-
aration IC. The main drawback is the lack of flexibility
(the algorithm is suited to 2 unique application) which
is required in many real applications for efficient imple-
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mentation of source separation algorithms.

o the flezibility can be obtained by the digital imple-
mentation (DSP) and it is generally suitable in many
practical cases, for instance: ‘

a) more complex algorithms (e.g. ‘source number un-
known, a lot of sources to be estimated)

b) various algorithms whick must be implemented
and adapted for different applications.

e the cost of the microsystem is often an important
criterion in the design of its architecture. The study of
the algorithm performance in limited accuracy becomes
essential for this purpose. For example, if the DSP solu-
tion is chosen, we need to determine the minima) accu-
racy required (e.g number of bits for data quantization,
DSP word-length, fixed- or floating-point computations)
for good performance of the microsystem.

Results demonstrate that the learning of the sepa-
rating matrix W needs a good accuracy (16 bits fixed-
point). Signal quantization can be performed with a
lower precision: 8-12 bits ADC can be used.

VII. CONCLUSIONS

The feasibility of a new type of smart microsystem,
based on the combination of a sensor array and a source
separation signal processing, is demonstrated. .

The microsystem is able to cancel the cross-
sensitivity and the crosstalk and the principle can be
applied to any multi-sensing application.

In the case of silicon magnetic field (Hall) sensors,
which are well known for their B — T cross-sensitivity,
we provedithe efficiency of this approach to cancel both
cross-sensitivity and crosstalk using a low-cost sensor
array.

Currently, we design a complete prototype, as de-

picted in Fig. 4, in which mixtures will be dore directly

by the sensor, instead to be simuilated.
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