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ABSTRACT

The paper describes an approach to general-purpose design
sensitivity analysis for electromagnetic devices.

Micro system technology often requires the assessment of
manufacturing techniques or effects of  tolerances.
Emphasis is therefore put on the adaptability to different
requirements, depending on  desired accuracy,
computational effort and significance. By introducing 2
distributed sensitivity function, the effect of small contour
distortions can be described. The design sensitivity is based
on a magnetic double-layer model. It is shown that
sensitivity can be expressed in terms of virtual anti-paratlel
double-layer currents, flowing in a movable contonr. The
sensitivity is explicitly derived for two-dimensional
coordinate systems using the finite-difference method
within a commercially available field calculation program.
The proposed method is demonstrated by means of an
example of two magnetic planes facing each other.
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INTRODUCTION

Especially in the field of micro system technology the
predicion of the effect of manufacturing tolerances
increasingly gains importance in order to facilitate the
assessment  of manufacturing  techmiques.  This
consequently amounts to the so-called tolerance analysis.
Sensitivity information is also required in many
optimization methods. The determination of the
“direction” of optimization steps [1,2] is decisive for those
methods to work properly. Thus an efficient sensitivity
analysis at moderate accuracy is desirable.

In general, however, field calculation programs, i.e.
existing finite-difference and elements codes, are not
designed to perform sensitivity analysis to system
paramneters.

Normally, interest is taken in the optimum design of a
specific electromagnetic device. On the other hand, for
economic reasons a method that can be adapted to different
cases is desirable as well. '
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The method for discrete sensitivity analysis [3] is very
general in that they are applicable to many problems.
However, sensitivity caiculation on the discretized
equations often requires access to the source code. It is
therefore desirable to have a sensitivity evaluation method
which is more generally applicable and can be
implemented without extensive access to and knowledge of
the insides of standard finite-difference codes.

In the continuum approach of sensitivity analysis this aim
is achieved by differentiating the variational governing
equations before they are discretized [4].

The intention of this paper is to implement shape design
sensitivity analysis which takes advantage of existing
finite-difference codes in connection with post processing
data from one single field calculation of the system being
analyzed. It is shown that sensitivity can be expressed in
terms of virtual  anti-parallel . double-layer currents,
fiowing in a material contour. This may offer a way to
meet the issues mentioned above.

SENSITIVITY AND DOUBLE-LAYER
MODEL

Sensitivity Formula

Sensitivity analysis defines the relative sensitivity function
for time-independent parameters as

S, =a—xa—‘;’4 M
J
whereas x; represents the i-th state variable; pj is the
element j of the parameter vector. Hence the sensitivity is
given by the so-called sensitivity matrix S, containing the
sensitivity coefficients §;;, equation(l).
The direct approach of numerically differentiating by
means of numerical field calculation software will lead to
diverse difficulties [1,3].
Therefore, some ideas to overcome those problems aim at
performing  differentiations necessary for sensitivity
analysis prior to any numerical treatment. Further
calculations are then carried out with a commercially



available fisld calculation program. Such approaches have
already been practiced successfully [5],

In the following sections, it is started from the assumption,
that sensitivity can be expressed in terms of virtual surface
current densities by means of which an equivalent system
can be solved to obtain sensitivity information; this will be
proofed.

Magnetic Double Layer

Starting from the relationship of the magnetic intensity
boundary condition at the interface between two media
with presen: surface current demsity and the general
magnetic double-layer formulation, given by equations
(2,3),

H,-H, =K xn )

A -A,=p-d-K xn 3)
information on the behavior of the tangential components
H; and A, is available. In words, two surface current

densities with the magnitude [K,| at the distance dl

(thickness of the magnetic double layer) produce a
discontinuity of the magnetic vector potential, whereas the
total sum of current densities Kg produce a discontinuity of
the magnetic intensity. The cross product vector of the
normal vector n and the respective current density Ks, Ky
lies in the surface.

Referring to Figure 2, two different surface current
densities K, K;, flowing on either side of the interface
between two media at the distance di from each other, can
be defined (6). The permeability p has to be split into two
portions, since the double layer stretches across the
material contour. So equations (4,5) are modifications of
2,3).

Iiu-_fih =]§S 4)
H,+H1
Al:_ 2t =-_I-—_2'Kn'd1' )
2
K K
K, =?+KD K, =7—KD (6)
Equivalent System

A magnetostatic arrangement can be described by
Poisson’s equation.

AM=—-] (7)

This equation can formally be differentiated with respect to
parameter p;. By doing so, Poisson’s equation is conveyed
into Laplace’s equation for sensitivity S(r,p), providing
that the current demsity J is kept constant, i.e. not
depending on the parameter p;. It should be remarked, that
the original current density has now been eliminated.
Differential equations of the form

A8,=0 ' ()
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representing components of the vector Laplace equation
are to be solved. In the following, the o component of a
cylindrical problem is to be considered. In order to obtain a
unigt. solution, the question for inner boundary conditions
raises. The boundary values in question are obviously
related to the parameter p;. Hencefore, these parameters are
referred to as movable material contours (r-z cylindrical
coordinates) as outlined in Figure 1.
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Figure 1. Magnetic vector potential at 2 movable contour

After virtually moving the contour p by the distance &, the
vector potential at location p+e of now A',/A’; must
remain continuous. For the o component of A(r,z,p), this
can be described by the two-dimensional Taylor series

A, 94, dA, 9A,
Aj+— g+——g=A, +—=g+—=-¢ ()]
op dz op dz
yielding
dA _9A,, - OA . _ 94, . (10)
ap dp oz oz

This structure of relationship applies to all field quantities
being comtinwous at the interface between two materials.
However, this is not directly applicable as boundary values.
By inspecting equations (4,5) and differentiating with
respect to p, one can find



0H, dH,
—_———= 11
aAI: aAZt y'l + p"'

5 3p > -Kp,, - di. (12)

The surface current densities Kps, Kpp, carrying the
dimension A/m’, are used to define Kp;, Kp, that will
serve as input data to the existing finite-difference coding.
These current densities must not be mistaken for current
densities originating from J!

Direct Results

The foregoing provides some direct information on the
relationship between the differences of sensitivity and the
corresponding continuous field components on the contour,
A first estimate of sensitivity may be found by considering
the following equations (13-16); especiaily equation (13)
results from (10).

A, 0A,
————— = BH -B,, (13
g  op

aAlt _a.é"_‘ =, —W,)-H (14)
ap Bp Hy =Ky )-H,

{

Equation (14) is of special interest for later considerations,
since H; is part of the field computation output data; thus it
can be used without any alteration. Referring to equation
(10) again, analogue expressions can be derived for the
continuous components of the magnetic intensity H; and
flux density B,. By using curlH=0 as well as divB=0,

equation (15) and (16) have been formed in a way that only
derivatives of continuous field components remain on the
right sides.

3H, éHzt_(l l]aBn

——— = (15)
o o (M, K o
B -af—"(u aH‘ (16)
op  op ’ or

Concluding it is to be seen, that only field quantities on the
contour need to be taken into account, which can directly
be derived from data obtained by the initial field
computation performed.

This is essential when proceeding to the numerical
implementation of a suitable algorithm.
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NUMERICAL APPROACH
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Figure 2. Meshes at the contour

Figure 2 shows a sector of the discretized space of the
equivalent system which is sub-divided by the boundary in
question, carrying two surface current densities Kp,, Kp.-
through one mesh on either side. The meshes have the step
size of Az in i direction and Ar in j direction whereas i, i
act as local coordinates. The step size is only needed to be
equidistant at the contour,

This configuration represents the said magnetic double
layer. :

Equivalent Current Densities

The boundary conditions obtained earlier (equation (10,14-
16)), are to be transformed into the equivalent surface
current densities Xp,, Kp..

More thorough investigations revealed that the total
current Kpg is not depending on the mesh size within the
given scope of accuracy. The equivalent current densities
can now be stated only with data available from the initial
field calculation.

Hy— M aBn 2'(Bn _B?.t)
= . + 17
K, 2ompy O Az (L i) 4
B -, aBn 2'(Blt —B?.l)
= . - 18
sz 2'.“1}-’-2 or AZ'(H: +“-2) (18)

The structures of equations (17,18) can be compared with
the ones given by (6). The first term in (17,18) referes to
the sum Kpg of the virtual current densities (see
equation(11,15)), and the second term to the difference
Kpp of those current densities (see equation (10,11,13).

The -current density data input to the field calcnlation
program for sensitivity calculation is realized through its
standard current input interface.



An interesting aspect of calculating the sensitivity of vector
potential by means of this equivalent system is that only
linear computations are required. Given that the initial
field calculation has properly been performed, the
distribution of the (in general) non-linear permeability is
known. Only this distribution in the working point is
necessary for calculating the equivalent system.

The following features are achieved;

- no change of the existing finite-difference coding

- no re-meshing between calculation steps

- only data required from one single initia} field calculation
of the original system

Distributed Sensitivity

Apart from calculating a single sensitivity coefficient, one
may wish to investigate the influence of not only the entire
contour, but also small distortions of it. The following
function be called distributed sensitivity:

0A(r,z,p)

S.(r,z,p)=
J ap'i

(19)

Summing uwp S;i(r.z,p) will yield the above-mentioned
sensitivity coefficient. For the evaluation of, for instance,
small irregularities at a contour to be carried out, only the
virtual current densities at the - specified location are
necessary to be known. One run of the field computation in
linear mode will provide the desired sensitivity information
along the contour as well as in the entire discretized space.

Global Field Quantities

For the design of magnetostatic devices to be evaluated in
satisfactory way, it is often sufficient to know the
respective global field quantities (force, field energy,
inductance). This restriction to global field quantities
offers an opportunity to dramatically reducing the set of
equations to be solved. While for local field quantities the
complete meshed area has to be taken into account, global
quantities only require the node positions along the
contours to be calculated.

The force on an interface between two magnetic materials
can be formulated as the integral of the force density f,
over the surface A.
F, = Jf LJdA (20)
The derivative of the force density f, with respect o a
design parameter p becomes in cylindrical coordinates:
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Besides the distribution of permeability 11, which is known
from the initial (non-linear) field computation, only the
continuous field components of B and H are relevant.

This suggests solving the differential equation (8) along
the respective contour, saving the computational effort for
all other node positions. _

This can be done by treating the remaining stripe-shaped
region like a so-called sub-region within the entire meshed
area (an option provided by the field calculation program)
with own boundary values. The boundary conditions along
the contour have to be formulated as Neumann boundary
values, but care is required because the problem of
differences of nearly equal numbers makes itself strongly
felt.

There are sufficient boundary values to obtain a unigue
solution, since Dirichlet boundary values apply to the
remaining boundaries. In order to define the Neumann
boundary values, additional conditions need to be
considered at j position on the boundary. In similar fashion
(see Figure 2) to equation (9), with first-order
approximation of the derivatives, and equation (22)

. 0B, dB, Ar
B, +—  g+—g~—t.—=
dp oz ar 2
JB B dB, Ar
B, +— e+a Log+—L.—, (22)
dp oz or 2
equation (23) can be found.
oB,. -.BB.,n - dB., _ oB,, 23)
dp dp oz oz

Replacing the flux density by the vector potential on the
left side and using the slightly modified equation (14)
yields the behavior of the o component of vector potential
at positions 4 and 6.

10A, 13A, 82 A oA, _oB, 3B, o4
I, Bp . op apar dpor oz dz
A, 3A,

2T (-, H, 25)

The described procedure has been repeated for the flux
density at positions 3 and 5 in analogue manner to have an
additional equation for averaging purposes.



10A, 10A, 2°A, 9°A, OB,

- + - - _aBSn
r, 0p I, dp  Jdpor dpor oz

9z

(26)

It is necessary to introduce finite differences at this state,
since formulas need to be discretized for implementation.
By applying the divergence theorem of the magnetic field
in discretized form to the right side of equations (25,26)
and collecting terms, the Neumann boundary values are
finally obtained in the following form:

oA, _(u+1) @ -1
& 3RP Az

{@i+n-H,, +@j-1-H,,)

87 -1)-p, -
+(J 3y pq.H

OAg _(w +uy)-(4i° -1
0z 32§ Az

{@j+n-H,, +@i-p-H,,)

87 = 1), ~
'Jr(J ) Ho l‘ll_H.

8
§7 - Az S

'The magnetic intensity in these two equations is meant to
be the tangential component of the magnetic intensity on
the contdur as it comes from the initial field calculation.
Since the magpetic intensity on the contour has been used
in the foregoing equations (27,28) instead of the ones from
both sides, sensitivity computations will yield approximate
values that correspond with the analytic solution. This will
be reflected in the example below.

EXAMPLE

In order to verify the theoretical findings, several
analytically solvable examples have been worked. The
corresponding numerical solutions have been obtained
from a commercially available field calculation program
(61

For the purpose of better significance, examples with non-
symmetric material distribution had been chosen {7}

Let us consider the arrangement in Figure 3. It shows two
plates in 1-z cylindrical coordinates, facing each other with
the distance z,-z; and with a current loop at the coordinate
origin.

The boundaries in r direction and the left one in z direction
go off to negative or positive infinity; thus all field
quantities will vanish there.
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Figure 3. Two-plates arrangement

Contour z; is considered movable in z direction, and we
are interested in finding the sensitivity of both the vector
potential S(r,z) and the force Sg; with respect to z;.

This system has been treated semi-analyticaily, applying
the inverse Fourier transforms numerically to finally obtain
the sensitivity of vector potential.

For convenience, the plots of the sensitivity of vector
potential have been multiplied with a normalizing factor.
The plot shown in Figure 4 illustrates the kind of results
obtained; the derivative of the vector potential with respect
to the geometric parameter “contour z;“. The magnetic
double layer, located at z;, is well indicated by the edges.
This curve is a sector from the complete 2D solution that
has been computed with the virtual double-layer currents
according to equations(17,18).
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Figure 4. Sensitivity S(r,z) of magnetic vector
potential (at r = 0.010 m)

Apart from the regions adjoining the contour (finite
thickness of the double layer) the numerically calculated
curve comes considerably close to the analvtically
calculated result (see Figure 3).
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Figure 5. Anatytically and numerically
calculated sensitivity

If only the sensitivity of the force F; is required, one can
save computational effort by solving the reduced set of
equations concerning the meshes adjoining contour z;. The
plot shown in Figure 6 has besn computed that way,
applying the Neumann boundary values according to
equations (27,28). As already remarked, this result may
directly be compared with the respective left and right-
hand-stded values obtained analyiically.

-0.008 Z; -8.007

Figure 6. Sensitivity S(r,z) of magnetic vector
potential at contour z;

Accuracy, of course, varies on how many influences had
been taken into conmsideration, especially the order of
approximation (only first-order approximation used here).
The maximum values from Figure 6 illustration have been
gathered and compared with the corresponding analytic
values (see Table 1).
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Table 1. Comparison of the sensitivity of the normalized
vector potential (left and right-hand side) and force F,

‘Sensitivity Analytic | Numerical | Deviation
Left - [Vs/m’] 224 290 29%
 Right [Vs/m’] 3149 3061 -2.8%
Force [N/mj 132.5 1439 8.6%
CONCLUSION

An approach to sensitivity analysis concerning several field
quantities has been presented. This approach offers a
possible way toward a cost-efficient sensitivity and
tolerance analysis, to support the design of electromagnetic
devices. The method only requires post-processing data,
based on one single field calculation of the system in
questions, taking advantage of an existing finite-difference
coding. :

The proposed magnetic double layer model fits linear as
well as non-linear cases.

Recently, the method is applied to supporting the design of
a real electromagnetically operated bearing system.
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