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Abstract

Based on simple plate theory and the Bernoulli equa-
tion, the effect of fuid flow on the deformation of fluid
driven MEMS diaphragm microvalve is investigated an-
alytically and numerically. The static instability of such
a microsystem is demonstrated with both analytical and
numerical soiutions. Theoretical formula is presented
for prediction of the limit fiow velocity at which the
pressure difference across the diaphragm is positive over
the whole MEMS diaphragm. In addition, static stiction
phenomena is analyzed and a closed form sciution of the
relation between the contact zore and the external pres-
sure is obtained. The results provide important infor-
mation of parameters in the design of MEMS diaphragm
valve and can be used as a basis in the mechanical design
of such valves.
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INTRODUCTION

Miniaturization of mechanical systems promises unique
opportunities for progress of engineering and technol-
ogy in new directions. Based on the microelectronic
fabrication technology, extensive microelectromechani-
cal systems and devices, such as microvalves, microchan-
nels, microdiffusers, microgenerators, and micromotors
etc. [1], have been built. Such devices are inherently
smaller, lighter, faster, and usually more precise than
their macroscopic counterparts. Seme of these compo-
nents have been successfully combined to realize mi-
cromechanical systems. A microsystem is a complex
miniaturized array of materials such as silicon, metals
and plastic- 1t is obvious that successful microfabrica-
tion techn: .= y requires a detailed knowledge of pack-
aging, maz . :als, device behavior, reliability, and an un-
derstanding of current fabrication technology. There-
fore, an effort on modeling MEMS micromechanical be-
havior under different working environments, which will

provide a sound basis for the application of MEMS, is
needed.

The desired general features for a MEMS valve include:
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Figure 1: A schematic diagram of MEMS pressure-
balanced diaphragm valves

1) quick response,

2) low driving energy,

3) low energy consumption,

4) stable temperature characteristics,
5) small size and weight,

6) no degradation and aging in use,
7} no negative environmental effects.

Several kind of MEMS microvalves driven by different
mechanism have been reported in the literature. Most
of them consists of a diaphragm made from either nickel
2] or silicon [3]. The mechanism includes, electromag-
netic [2], [3], electric [4], thermal 3], and pneumatic [6].
Among these mechanisms, the pressure balanced MEMS
microvalves are attractive because of the low energy con-
sumption in the operation. Here we briefly describe
the basic working mechanism of the pressure balanced
MEMS microvalve (for detail see Huff and Schmidt {6]).
Figure 1 shows a schematic diagram of microvalve. Fluid
such as air, water, etc., flows into the microchamber be-
tween the valve and a substrate,which generates a pres-
sure difference across the valve and provides a driving
force to control the motion of the valve. Consequently,
the total force necessary to actuate the valve can be de-
signed to be only a small fraction of the total pressure
of the fluid by properly sizing the top and bottom sur-
faces of the microstructure [6]. Without considering the
effect of fluid flow on the pressure distribution across
the valve, Huff et al. [7] have analyzed the mechanical
behavior of the microvalve on the basis of laminar flow
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Figure 2: A model of pressure-balanced microvalves

and simple plate theory. However, when fluid flow oc-
curs, the microvalve surface is subjected to non-uniform
pressure, which is 2 function of fluid velocity.

The motivation of this work is to develop a guasistatic
model for the pressure-balanced type of MEMS micro-
valves by accounting for the fluid-structure interaction.
This model provides us a method to design and inves-
tigate the effect of Auid flow on the reliability of these
devices.

STATIC MODELING OF MEMS
MICROVALVE

Figure 2 shows the model of a pressure-balanced MEMS
microvalves. Fluid flows into the microchannel from in-
let A and exits at outlet B. The fluid is assumed to be
incompressible and inviscid and the microvalve elastic.
For simplicity, the wall is treated as a rigid body. Un-
der small deformatijon, simple plate theory is used. The
governing equation of the microvalve deflection is

AP

4,
Vw—-D
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where w is the valve transverse deflection, AP (= Py —
Fy) is the pressure difference across the microvalve, P is
the hydrostatic pressure in the fiuid, Py is the constant
pressure applied omto the valve on the side of B, and
D=Ed®[12(1 — 1) the bending stiffness, £ is Young’s
modulus, d is the thickness of the microvalve, and v is
the Poisson ratio. For the MEMS microvalve shown in
Figure 2, the boundary conditions are
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Figure 3: The relation between the contact radius and
the applied pressure

The fluid flow satisfies the Bernoulli equation

V2

5 + 5 = constant (3

g

where p is the fluid density, and V is the flow velocity.
Before solving the above equations, we mtroduce the
following dimensionless variables
d 3
(;) (4)

CONTACT PROBLEM IN MEMS
MICROVALVE

E

r=r/a, w:w/a, andD:m

Before solving the above equations relating the deflec-
tion of microvalve, we first consider the contact prob-
lem oceurring in MEMS microvalve systems. To close
the valve, a pre-applied pressure (Py) shown in Figure
2 is applied to the valve on the side of B, while the
pressure and fluid velocity on the side 4 is set to zero.
This forces the valve to contact the substrate and block
the fluid flow. Under this condition, the contact radius
(b} between the valve and the substrate is a function of
the distance hg and the pressure Ps. At the edge of the
contact zone, the boundary conditions are

dw Pw -
w-—hgandg;-_—d—ﬁ- 0 atr=5% {3)

with b to be determined. The first condition indicates
the constraint on the deflection of the valve, the sec-
ond means that the slope of the valve at the edge of
the contact zone is zero, and the third implies the mo-
ment (M) is zero. For the constant pressure difference



(AP = ~F,), the solution of equation (1) is
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where ¢; (I=1, ..., 4) are determined by the boundary
conditions, which will not be given here because we are
only interested in the size of the contact zone. Using the
boundary conditions (2) and (5), the dependence of the
contact radius on the valve stiffness, the gap between
the valve and the substrate, and the external pressure
is

aPp _ —64+64X% —128In A

hoD - ey
and
F) ==<3+7A2 =5)1 4+ X5 —2In )

~4X3In A+ 62 In A — 82%4In% A (8)
where A = b/a. Figure 3 shows the effect of the pressure
on the contact zone under different gap. The contact
zone increases with the pressure, as expected; while it
decreases with increasing the microvalve stiffness. This
suggests that the stiction problem occurred in microsys-
tems may be reduced by increasing the valve stiffness.

DEFLECTION OF MEMS
MICROVALVE

When pressure higher than the pressure (P,) is applied
onto the microvalve on the side A, the microvalve is
opened. Fluid flows from the inlet to outlet and a pres-
sure field is generated on the side A of the valve. The
defiection of the MEMS microvalve is described by equa-
tions {1-3}. For inlet pressure of P; and fluid flow veloc-
ity of ¥, equation (3) gives

P; V2 P

V2
L =1ty 8

P TET 5T (9)

For incompressible fluid, the volume conservation gives

__ ahoVp

V= Th

forrg<r<e (10)

the fluid velocity between the valve and the substrate,
where h is the distance between the valve and the sub-
strate at the radius r. Substituting equation (10) into
equation (9}, the pressure due to the fluid fow is

) 2
Pf=ﬁ+%|il~(a?%)} forrp<r<ae (11)
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For simplicity, the pressure applied onto the valve at the
outlet is assumed to be a constant

Pr=Pl .., forr < g (12)
Equations (11) and (12) indicate that, to generate pos-
itive pressure difference for fluid to flow, it requires

PV§ _ {aho 2

2 ror) |70
This imposes a limitation on the highest fluid veloc-
ity to maintain positive pressure difference over the di-
aphragm surface for a given geometrical configuration
of the MEMS microvalve or the geometrical constraint

on the vaive for given pressure and fluid velocity. Sub-
stituting equations (11) and (12) into equation (1), we

P+ (13)

have
1 V2 fahe\?]
4= = o 1.2
Vw_D{P-l- 2 1 (rh) forrg < r < a{l4)
1 o2 [ [aho)\?]
4oy = — 270 fq | 2o
Vw..D{P-I- 5 1 (roh) for r < rg (15)

where P = P, — Py and h = ho +w. Equations (14) and
{15) are nonlinear differential equation, which can not
solved analytically. A numerical method will be used
to analyze the relation among the microvalve defiection,
the pressure P, and the fluid velocity.

There are different numerical methods, such as shoot-
ing method, spectral method, finite difference method,
variational method, and finite element method, that can
be used to solve the above equations. Here, we use the
superposition method. Using the result for a ring load
applied symmetrically onto the valve surface [8], the de-
fiection of the microvalve due to the pressure given by
equations (11) and (12} is,for 0 < r < 7q
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. Figure 4: Effect of the air speed on the deflection of the
valve for the limiting condition
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which is an integral equation to be solved numerically.
Limiting Case

Considering the limiting situation, w << hg, the pres-
sure distribution can be approximated as the following

—p 2B (ey
Pr=P+ 5 _1—(r) forro<r<a (18
o f 2
P =P+ £V 1—- (_a_) :| forr < g (19)
2 i

The deflection of the microvalve is, for 0 < r < rg
oV a)?
To

)(a2 — 1"2)2 _ pv?
2

P+ 64D 8D
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Figure 5: Effect of the outlet radius on the deflection of

the valve for the limiting condition
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Assume that the microvalve is made of silicon and the
fluid is air and use the parameters, E=169 GPa and
v=0.358 along the (111} direction of single crystalline
silicon [9], p = 1.28 kg/mm?® of air at 15 °C [10], and
d/a=0.01. The deflection of the microvalve under dif-
ferent conditions is plotted in Figures 4 and 5. For the
same geometrical configuration, Figure 4 shows that the
defiection of MEMS valve first decreases with increasing
the fluid velocity then the deflection direction reverses.
The distance between the valve and the substrate de-
creases with inereasing speed and may cause the block
of the air flow and instability of the microvalve system.
Similar to the increase of the air speed, the decrease
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Figure 6: Effect of the air speed on the deflection of the
valve

of the outlet radius also causes the reverse deflection of
the microvalve and increases the possibility of the in-use
stiction as shown in Figure 5.

Numerical Calculation:

Equations (16) and (17) constitute a set of nonlinear
integral equations. Before solving them, the equation is
simplified as below, for 6 < r < 7y
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Figure 7. Dependence of the valve center deflection on
the air speed
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The iterative method is used here to obtain the numer-
ical solution. To implement this method, an initial de-
flection based on equations (22) and (23) is employed to
calculate the possible valve deformation as follows

Wn = flwn—1) for (n =1,2,3,...) (24)
where the function is given in equations (16) and (17).
The calculation will continue until |Jwp — wo_z| (0 <
7 < a) reaches the allowable value. The parameters
used here are the same as those in the above section but
we also consider the dependence of the valve deflection
on the distance between the valve and the substrate.

To analyze the effect of the flow speed on the valve
defiection, several different speeds are used. Figure 6
shows the valve deflection for hy/a=0.05, d/a = 0.001,
and rg/a = 0.5. The microvalve deformation has the
same trend as that in the limiting case. A reverse de-
flection of the valve is found, which might cause the un-
stable operation of the microsystem at high fluid speed.
Together with the data from the limiting case in Figure
7, the effect of air flow velocity on the center deflection
of the valve is shown. A linear relationship between the
deflection and the kinetic energy of the air is observed
for the limiting case, which is expected from ihe lin-
ear plate theory. The deflection for the limiting case
is always smaller without considering the effect of dis-
tance between the valve and the substrate. When the
reverse deflection of the diaphragm valve reaches about
10% of the distance, the deflection of the diaphragm is
a nonlinear function of the air kinetic energy. Further



increase in the gas kinetic energy (air speed) beyond cer-
tain value will increase the reverse deflection of the valve
and lead to the collapse of the microvalve at a critical
air speed. For example, this occurs at pV2/2p > 1.4
for the above configuration. This may cause the Sys-
tem to fail. If we continue to increase the gas kinetic
energy, nonlicear large deformation plate theory should
be used. However, the large deformation will lead to the
fracture of the microvalve due to the brittle properties
of the valve materials. Therefore, the operation range of
the air speed is approximately limited by equation ( 13).

CONCLUSION

Based on simple plate theory and the Bernoulli equa-
tion, the effect of inviscid fluid fow on the deformation
of the microvalve is analyzed. ¥t turns out that, if the
pressure difference applied onto the MEMS microvaive
surface is positive in the direction of opening the valve,
the microsystem can work properly. Otherwise, a coi-
lapse phenomenon will occur and may cause the failure
of the system under certain working conditions, such as
high fluid speed, small outlet radius, and the small gap
between the valve and the substrate. For a given geo-
metrical configuratior, the constraint on the fluid pres-
sure and iis speed is given in equation (13), at which the
pressure difference across the MEMS diaphragm is pos-
itive. The analysis provides us with a sound mechanical
basis for designing and fabricating MEMS microvalves.
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