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I. INTrRODUCTION

Manufacturability is an important issue for deep-
submicron micro-electronic devices. Yield, defined
as the fraction of the total manufactured devices
that meet all performance specifications, is an im-
portant component of manufacturability. Both yield
evaluation and design for yield improvement require
accurate characterization of performance variation
through its distribution. For parametric yield, perfor-
mance variation results from process variations dur-
Ing manuvfacturing, such as variations during gate-
patterning or gate-oxidation in MOS devices. For
catastrophic yield, performance variation results from
the variation in the number, size, and shape of the par-
ticles on a wafer. In either case, an accurate estima-
tion of the distributions of the performance variables
is essential for yield estimation and optimization.

A typical approach for estimating a performance
distribution is to assume an appropriate form for the
parametric distribution and estimate the parameters
from historical data or designed experiments. For ex-
ample, particle numbers are assumed to follow a Pois-
son distribution, while most continucus performance
variables are assumed to follow a normal distribution.

The assumption of a fixed parametric form, known
a-priorl, is often not valid. This is especially true
with the trend towards increasing wafer sizes where
variation contribution from non-random spatial pat-
terns cause significant departure from the normal
distribution assumption [2]. In this situation, per-
formance distributions can take arbitrary or non-
standard shapes and are not easily parameterizable;
these non-parametric distributions make rapid yield
calculation a difficult task.

In this paper, we propose a method that allows
yield prediction under arbitrary shaped distributions.
Furthermore, we provide a compact representation of
these non-parametric distributions to allow rapid vield
calculation for manufacturability methods that at-
tempt to design in robustness to manufacturing varia-
tions [3]. Section II sets-up the yield prediction prob-
lem and discusses the traditional approaches and the
required generalization to calculate yield under non-
standard data distributions. Section III describes a
design of experiment for the salicide process where we
first encountered the problem of non-parametric dis-
tributions. Section IV discusses a method to extract
and represent the non-parametric reference distribu-
tion from experimental data. Section V presents an
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accuracy comparison for probability calculation based
on normal distribution assumption with that based on
a non-parametric approach. Section VI summarizes
the contribution of this paper.

II. ProBLEM FORMULATION

Figure 1 represents an abstraction of a integrated
circuit manufacturing process. In this process a sili-
con wafer is subjected to process setting p. The pro-
cess 1s also subject to inherent manufacturing distur-

-bances denoted by e. The output from the process

is the performance measurements ¥ made on a ran-
domly selected die on the wafer. Process yield, or the
probability of meeting target specifications given p is
denoted by

P(Y €Tlp) (1)

where T is the target space or specification limits
for the performance measurement. This probability
is calculated with respect to the probability measure
of the output distribution and is a function of the
assumptions made on the shape of the distribution.
There are at least two standard approaches to char-
acterize the mean, the variance, and the form of the
output distribution.

In the first approach, the output ¥ is modeled as a
function of process settings plus an independent ran-
dom disturbance, that is,

Y = f(p)+e 2)

The function f is typically approximated by a second
order response surface model (RSM) built from data
from a designed experiment. The disturbance ¢ is as-
sumed to be independent and identically normally dis-
tributed with zero mean and a constant variance ¢2.
The constant variance &2 is estimated from experi-
mental data. Under this formulation, the distribution
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of performance Y at any process setting p is given by

Y ~ N(f(p),0%)

and the probability calculation in (1) becomes a sim-
ple matter.

In a second approach, one retains the independence
and normal distribution assumption on ¢ but assumes
that the variance itself is also a function of ProOCess
settings p. Specifically, the variance of the within-
wafer measurements is modeled as a function of the
process settings, that is

log(c®) = g(p) +¢

where g is also approximated by an RSM. ¢ is the ad-
ditive error assumed to be distributed normally with
meaxn zero and a constant variance denoted by o [4];
this variance is also estimated from experimental data.
The log transformation ensures that the non-pegative
variance-response is mapped on to the real line. Un-
der these assumptions, it can be shown that

]

73(p) = exp(s(p) + 5-)

is an unbiased estimator of o2 for each process condi-
tion p. Now the probability calculation in (1) can be
carried out easily by assuming

Y ~ N(f(0), 73(p)).

Both of the above approaches assume that the er-
ror distribution is independent and identically nor-
mally distributed. These approaches may be general-
1zed to other parametric distzibution forms and still
permit yield calculation. But what if the output or
performance distribution does not fall in the paramet-
ric class?

Figure 2 shows the spatial pattern across 2 wafer for
one of the electrical parameters denoted by Y, and
is based on measurements made on 24 die-locations
on the wafer. The non-random pattern is typical of
many electrical measurements. The figure also shows
the frequency histogram of the measurements. For
the purpose of yield calculation, we are interested in
predicting the fraction of die-measurements that meet
specifications. We make two important observations
about the histogram. First, for vield calculation, the
histogram captures the total effect of both the de-
terministic pattern across the wafer and the random
variations in the measurements. Second, though the
individual measurements on the die are not indepen-
dent of each other, the histogram captures the total
variation that will be seen across the wafer. Concep-
tually, this is equivalent to separating all the die on
the wafer, shuffling them in an urn, and taking a mea-
surement from a randomly selected die. As far as yield
calculation is concerned, this is the only distribution
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Fig. 2. A wafer-map showing within-wafer variation of elec-
trical data and the corresponding frequency histogram for -
the data.

of interest; individual die-locations are of no relevance
for the final yield calculation.

The above histogram or distributions can have ar-
bitrary shapes; the shape will depend on both the
deterministic and the random component of within-
wafer variation. How do we perform yield calculation
based on these arbitrary shaped distributions? In the
next two sections, we address various aspects of this
question. Specifically, in Section ITI we further explore
the possibility of representing the within-wafer distri-
bution by a parametric distribution. In Section IV, we
propose a method to improve our confidence about the
shape of the within-wafer distribution instead of rely-
ing on a distribution based on 24 die measurements
as suggested in Figure 2. This section also discusses a
compact representation of this distribution for use in
a TCAD framework.

ITII. A ProcEss EXAMPLE WITH
NoN-PARAMETRIC DaTa DISTRIBUTION

One of the steps in MOS device processing is the
formation of titanium silicide to make contacts to sil-
icon or polysilicon in an integrated circuit. Titanium
silicide reduces the contact resistance when metal con-
tacts are made later to these regions. The process
mnvolves the implantation of ions to form a diffusion
region followed by a deposition of a laver of titanium
to form titanium silicide. The critical performance of
interest is the contact resistance between the silicide
and the diffusion region.

An experiment was designed to study the silicide
contact resistance quality as a second order quadratic
function of 4 input variables: the source/drain im-
plant dose, the titanium thickness, the silicide anneal
time, and the silicide anneal temperature. These in-
puts were selected based on prior engineering knowl-
edge and previous screening experiments. The design
of experiment for the 4 input variables consisted of
a G-optimal design with 20 independent runs and 4
replicate runs. A batch of 24 wafers was processed
through a standard CMOS process flow with the sali-
cide settings as suggested by the above design.

After processing the 24 wafers, contact resistance
measurements were available from 24 die locations
from each of the 24 wafers. From the within-wafer
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Fig. 3. Distribution of contact resistance as a function of pro-
cess settings.

contact resistance data, it was clear that both the
mean and variance of the within-wafer measurements
were a function of the process settings. Figure 3 shows
the shape or form of the within-wafer distribution of
contact resistance measurements for 8 of the sample
design points that received identical silicide anneal
time. The actual values of the contact resistance are
not relevant and are not shown to preserve proprietary
information.

Based on the the data from the experiment, it is
" -possible to build RSMs for both the mean and within-
wafer variance of the contact resistance as a function
of the process settings. But to calculate the proba-
bility given in (1) at any interior point in the pro-
cess space, we need to characterize the underlying
shape of the frequency distribution from the available
data. The idea is to test if the within-wafer data come
from one of the well known statistical distributions.
We performed this test using the Kolmogrov-Smirnov
(KS) statistic [1].

Briefly, the KS test allows us to determine if two
random variables have similar probability distribu-
tions and is based on the comparison of their cumu-
lative distribution functions (CDF). The CDF of a
random variable X is defined as F{z) = P(X < z)
where P is the probability density function of X. If
the actual underlying distribution is unknown, and in-
stead, only a sample of observations are available from
a distribution, the CDF is estimated as being equal to
the proportion of observations in the sample that are
less than or equal to z. Now let X; and X, be two
random variables with CDFs F; and Fs. We wish to
test whether the two random variables have similar
probability distributions, that is, whether Fy and F»
are statistically equivalent. This equivalence can be
tested using the KS statistic defined as

D= sup |Fi(z) = Fa(z)].

If the test statistic is greater than a critical value then
the assumption of equivalence is rejected. The critical

values are read-off from the tables of quantiles of KS
test-statistic distribution [1].

In our problem, we wish to determine whether the
within-wafer measurernents have a distribution similar
to that of, say, a normal distribution. In this case, we
let F7 denote the empirical CDF constructed from the
within-wafer measurernents from one of the wafers and
Fy the CDF of a normal distribution with the mean
and variance as those estimated from the within-wafer
measurements from that wafer. We performed the
KS test for each of the 24 wafer separately and found
that 22 of these wafers showed evidence to reject the
normality assumption at 0.1 significance level. As a
result, the normal distribution assumption was found
to be untenable.

Furthermore, we performed a series of Box-Cox
transformations to improve the normality of the data
but were unable find a single common transforma-
tion that simultaneously improves the normality of
the within-wafer measurements for each of the set-
tings. We also performed the above tests with two
other candidate parametric non-normal distributions,
namely, the ¢ and the Chi-square. Neither of the two
were able to fit the distribution of the within-wafer
measurements simultaneously for all process settings.

Although only a small set of transformations and
parametric family of distributions were attempted to
capture the underlying distribution shape, we found
the procedure to be time consuming and laborious.
Even if one is willing to expand the candidate sets to -
other transformations and parametric distributions,
there is no guarantee that the procedure will find a
closed form distribution to capture the within-wafer
measurements. Is there a better methed to represent
the underlying within-wafer variation? In the next
section, we take a non-parametric approach to char-
acterize the within-wafer distribution.

IV. CAPTURING VARIATION THROUGH
NON-PARAMETRIC DISTRIBUTIONS

In this section, we propose a non-parametric distri-
bution to capture the underlying shape of the distri-
bution of the within-wafer measurements at each the
design points. We first describe the method of con-
struction of the proposed distribution and then use
a cross-validation approach to check the validity and
adequacy of the proposed distribution to represent the
distribution of the within-wafer measurements.

We make one assumption about the underlying dis-
tribution of the within-wafer measurements. We as-
sume that whatever be the form of the underlying -
distribution, it does not vary with changes in the pro-
cess settings and that only the mean and the variance
of this distribution are functions of the process condi-
tions. This assumption is similar to the one made in
the parametric modeling framework. For example, if
the form of the distribution is assumed to be normal,
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Fig. 4. The reference distribution captures the underlying
shape of the within-wafer variation.

all the within-wafer measurements are assumed to re-
main normally distributed at all design points; only
the distribution mean and variance will be functions
of process settings.

Under the above assumption, there exist a com-
mon underlying form for the distribution of within-
wafer measurements. This assurnption also implies
that each set of within-wafer measurements are sam-
ples from this underlying distribution with only the
mean and variance being the function of process set-
tings. We obtain the form of the underlying distri-
bution by accumnulating the shape evidence from the
within-wafer measurements from each of the wafer.
Specifically, the within-wafer measurements are col-
lected from each wafer and the measurements are cen-
tered and scaled with the wafer mean and standard
deviation; this emsures that the standardized data
have zero mean and unit standard deviation. Next,
the standardized measurements from the individual
wafers are aggregated together to build a common
distribution or a histogram. This histogram or ref-
erence distribution is shown in Figure 4. This refer-
ence distribution is thought to capture the underlying
form of the distribution of the within-wafer measure-
ments. We performed a KS$ test to confirm that the
reference distribution is significantly different from a
normal distribution at 0.01 significance level. This
reference distribution is thought to capture the un-
derlying form of the distribution of the within-wafer
measurements. The standardized reference distribu-
tion is then represented by its empirical CDF and all
probability calculation can be made from this distri-
bution.

But how do we test the initial assumption of a com-
mon underlying distribution for the within-wafer mea-
surements, and the claim that the underlying distribu-
tion is the reference distribution? We test the assump-
tion and the claim by the method of cross-validation.

Consider the within-wafer measurements from
wafer 4,4 = 1,...,24. Let F; represent the empiri-
cal CDF obtained from these measurements after cen-
tering and scaling them with the mean and standard
deviation from the #th wafer. Let F_; denote the em-
pirical CDF of the reference distribution without the
measurement contribution from the ith wafer. We de-

fine the KS statistic
D; = sup:|Fi(z) ~ F_,(z)|

for i = 1,...,24. For each D;, we perform a statis-
tical significance test at 0.01 level. We found that
except for 2 of the wafers, the distribution of the in-
dividual within-wafer measurements was statistically
similar to the the reference distribution. Thus if we
are willing to ignore the anomaly from the two wafers,
the reference distribution is a good approximation of
the form of the distribution; furthermore, the form is
independent of the processing conditions. Note that in
the cross-validation approach of testing for similarity
of distribution of the within-wafer measurements with
that of the reference distribution, we first removed the
effect of the ith wafer from the reference distribution
so as not to bias our test.

Though the reference distribution does not have a
closed parametric form, we can estimate the proba-
bilities in (1) using the empirical CDF for this ref-
erence distribution. The calculation is performed in
two steps. First, the RSM models for the mean and
variance are used to calculate the mean and standard
deviation of the response as a function of process set-
tings.  Now the measurements in the reference dis-
tribution are centered and scaled with these values.
The new data are used to build the empirical distri-
bution function of the response at the given process
settings. The required probabilities can be easily cal-
culated from the empirical distribution function.

In the next section, we illustrate the method of
probability calculation and compare the accuracy of
our approachk to that of the calculation based on the
assumption of a normal distribution.

V. COMPARISON OF METHODS

Suppose we are interested in finding the probability
that R., in the scaled units, is less than 2.75 Q — um
for a given process condition. We can perform this cal-
culation for any process condition in the design space.
For validation purpose, we choose a process condition
that corresponds to one of the design points from our
experiment for the salicide process. Figure 5 shows the
staled within-wafer distribution. From the R, mea-
surements, the fraction that fall below 2.75 0 — pmis
11/23 = 0.4783. Using this as the benchmark value,
we can compare the accuracy of the traditional normal
approximation to that based on our reference distri-
bution approach. The comparison is summarized in
Table 1. The mean and standard deviation of the mea-
surements from this wafer is 3.08 and 1.33 Q — um re-
spectively. If one makes the normal assumption, then
P(0 < R, < 2.75|normal) = 0.3992 giving an error of
about 17%. On the other hand, when we use the same
mean and standard deviations to center and scale the
reference distribution, the fraction of measurements
lying in the same interval is 0.4596 giving an errvor of
4%.
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Fig. 5. Distribution of within-wafer scaled R, measyrements
for a sample wafer.

TABLE I
ACCURACY COMPARISON

Method P(0 < R: < 2.5) | Percent Error
Observed Value | 11/23= 0.4783 0.0
Normal Approx. 0.3992 17.0
Empirical CDF 0.4596 4.0

The above example illustrates the method of using
the empirical CDF for probability calculation. In this
example, the probability calculation uses only a small
poriion of the reference distribution and the corre-
sponding normal distribution to illustrate the relaijve
accuracy. This example is is not used to claim the ap-
propriateness of the reference distribution approach.
The appropriateness was determined using the more
powerful KS test which uses all parts of the reference
distribution during comparison with 2 candidate dis-
tribution. '

VI. Discussion

The reference distribution may be used for design
for manufacturability. For instance, one may be inter-
ested in finding a process condition that will maximize

the fraction of die that would give R, measurements

below a certain value. Since our method allows us to
predict the distribution at each point in the design
space, the problem reduces to an optimization prob-
lem where each function evaluation is a probability
calculation based on the reference distribution.
There are several advantages to the empirical CDF
approach. First, one can represent arbitrary shaped
distributions which may even incorporate within-
wafer spatial dependency information. In our exam-
ple. we used parametric or continuous data for yield
cauivtlon. Instead, we can replace the data with
- v catastrophic yield data. Since 1i.e approach
is endent of the shape of the disirivution, the
s w-hniques may be used for yield calculation.
Ser.oo the class of parametric distributions assumed
In iue traditional method is a special case of our gen-
eral approach; we can still represent a parameiric dis-
tribution by its empirical CDF. Third, the complete
predictive distribution at any interior point in the de-
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sign space can be characterized compactly by three
quantities, an empirical CDF function, 2 mean esti-
mate and a variance estimate. As a result, the com-
pact representation ¢an become part of TCAD tools
used for design for manufacturability.
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