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.Abstract

Based on simple plate theory, the deflection of MEMS
microvalve is studied analytically and numerically. The
critical load to iritially drive the microvalve is found to
be proportional to the pre-deflection of microdiaphragm.
The microdiaphragm becomes stiffer when either central
pedestal or the diaphragm thickness increases. These
decrease the deformation ability of the microdiaphragm,
which in turn reduce the possibility of in-use stiction.
The finite element results show that stress concentration
around the corner of the central pedestal and the step
occurs, which may result in local mechanical failure and
influence the lifetime of the microsystems.
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INTRODUCTION

A number of microvalves suitable for fluid flow mod-
ulating have been reported in literature. The mecha-
nisms include electrostatic actuation [1], [2], bimetallic-
differential thermal expansion (3], piezoelectric [4], mag-
netic [1}, [5], thermopneumatic [6], and shape memory
effects [7],[8]. One of the recent design of diaphragm mi-
crovalves is fluid-driven and pressure-balanced [9], [10],
which use fluids (such as air) generating pressure differ-
ence across the diaphragm to provide a driving force for
the actuator. The function of these microvalves depends
on the stifiness of a silicon diaphragm; therefore, the
valves have strokes of only a few tens of microns [§]. At
these levels of stroke, the required energy to modulate
the fluid flow are much higher than that most mech-
anisms can generate. Of the above mentioned mech-
anisms, only the fluid-driven, thermopneumatic, and
shape memory actuation have sufficiently high actua-
tion emergy for liquid flow modulations. The distinct
advantage of the fluid-driven mechanism is the reduc-
tion of power consumption, compared to the thermally
actuated valves such as the IC sensors valve or HP valve.,

Huff et al. [10], using laminar flow theory and sim-
ple plate theory, studied the deflection of microvalves
in the Auid-driven and pressure-balanced microvalves.

Figure 1: schematic diagram of pressure-balanced
MEMS microvalves

However, they did not address the interaction between
fluid and the microdiaphragm. Based on the inviscid
fluid flow and simple plate theory, Yang and Kao [11]
analyzed the effect of ihe finid-valve interaction on the
function of the microvalve systems. They found a un-
stable working zone within which the microsystems may
fail. However, there is few study on microvalves from the
viewpoint of system design. To optimize the design of
microvalves, which is subjected to dynamic ioading, it
is the purpose of this work, using simple plate theory
together with finite element analysis, to investigate the
mechanical behavior of the fluid-driven microvalves and
provide a basis for MEMS valve design.

DEFORMATION OF MICROVALVE

Figure 1 shows the schematic diagram of pressure bal-
anced microvalves. Fluid flows into the microchamber
at inlet and exits at outlet. This generates a pressure
difference across the diaphragm and provides 2 driving
force to monitor the deformation of the valve. Under
small deformation, the simple plate theory is used. The

governing equation of the MEMS microvalve deflection
is

AP
\74w = '—.D— (1)

where w is the diaphragm transverse deflection, AP
(= P; — P,) is the pressure difference across the micro-
diaphragm, Py is the hydrostatic pressure in the fuid,
Fy is the constant pressure applied to the valve on the
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other side, and D=Fd®/12(1 - »?) is the bending stiff-
ness, E is Young’s modulus, » is the Poisson Tatio, and
d is the thickness of the microvalve. For the microvalve
shown in Figure 1, the boundary conditions at the outer
edge are

w:fl—‘-‘i—o

= atr=a (2)

Critical load to open MEMS valve

As shown in Figure 1, the microdiaphragm is pre- de-
formed to seal fluid flow. To open the seal and push
fluid to fiow through the microchamber between the di-
aphragm and the substrate, an initial constant pressure
difference has to be applied onto the surface of the di-
aphragm to drive the diaphragm. For simplicity, the
central pedestal at the center of the diaphragm is as-
sumed rigid and the effect of ¢ at the out edge is ne-
glected (whose effect will be analyzed in the finite ele-
ment calculation). The boundary conditions at the inner
edge are

w=5andd—w=0

e atr=0b (3)

where § is the pre-deflection of the MEMS microvalve.
For the constant pressure difference AP, the general
solution of equation (1) is

AP P
wﬁmf4+01z+czln£+ca . (4)

Using the boundary conditions (2 and 3}, the diaphragm
deflection is

w =

1p (' + ot +22%0 — 2r%(a® + %)

22, T ' N
+40?b% In a) (5)
which gives the critical pressure difference (AP,) to ini-
tiate the operation of the microvalve as

AP, 64D
6 " ot ~bf+ 402l k

(6)

Figure 2 shows the dependence of AP. on the central

Ppedestal size and the pre-deflection of the microdiaphragm.

For small deformation, the critical pressure difference is
proportional to the pre-deflection of the microdiaphragm
as shown in equation (6} and it increases nonlinearly
with increasing pedestal size. For large deformation and
non-pedestal MEMS microvalve structure, the first or-
der solution of the microdiaphragm deflection is [12]

w = §(1 — r?/g?)? )
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Figure 2: Effect of the pedestal size on the critical pres-
sure difference

and
a'AP, &2
6iD% 1 _+ 0.488'd—2 (8)

which is a third-order relationship between the critical
load and the pre-deflection of the microdiaphragm.

Stiffness of the microdiaphragm

One of the important parameters in the mechanical de-
sign of microvalves is the stiffness of the microdiaphragm,
which controls the deformation capability of the micro-
diaphragm. Considering a symmetrical ring load (with ¢
as the line load density) applied onto the diaphragm sur-
face, the pressure difference across the microdiaphragm
becomes :

AP =gb(r —rg) | )

and assuming the central pedestal to be rigid, the bound-
ary condition at the inner edge is

W _g

T atr =5 (10)

The transverse deflection of the microdiaphragm is,
forb<r<ng

_ d’rog o® 2 ¥
v = wazan{(l‘Ei” 1-2
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Figure 3: Stiffness of the microdiaphragm under a ring
load

and forrg <r<ag

Let 7 = rg.and F = 27rog (the total load}, both equa-
tions (11) and (12) give the stiffness (Kstif fress) of the
microdiaphragm as follows

dF _ 16xD(a? — %)

kstif_fness = E?; = f (13)
f=a* - 20%8" + %% — rf + 4a?(8 — r2)
In{a/ro) — 4a®b® In*(a/ro) (14)

Figure 3 shows the stiffness change of the diaphragm.
The stiffness increases as the loading approaches the
outer edge in which the pedestal has little influence. It
also increases with increasing the pedestal size. This
provides us a method to change the compliance of the
microdiaphragm.

When the ring load is applied onto the central pedestal,
equation (12) gives the diaphragm defiection

B0
vo= 8rDal—p2 |2\ &2 a?

5 r2 r
¥ r? a 2. a a -
*(az"’a—z) ‘;?1“;1‘13} ()

Figure 4: Finite element mesh of the diaphragm

and the stiffness is

167 D(a® — %)
(a® — b%)2 ~ 40202 In%(a/b)

k&i ffness =

(16}

FINITE ELEMENT COMPUTATION

Finite element mesh

To analyze the effect of central pedestal size on the mi-
crodiaphragm deflection, finite element was used here
for two different cases, case I-

AP =9 for0<r<b (17
and case IT
APlye,<; = AP, <r<a (18)

For the case I, the hydrostatic pressure is applied only
in the region of b < r < a, and for case II, the pressure
is applied over the diaphragm surface 0 < r < q. A
typical mesh of a clamped circular diaphragm with ra-
dius of 1 mm is shown in Figure 4, in which four-node
quadrilateral solid element was employed. To simulate
the deflection process, a uniform pressure is imposed
on the diaphragm surface. This deforms the diaphragm
and gives the corresponding deflection. Qur simulation
used the large deformation feature of the ABAQUS -
nrte element package [13]. In the following calculation,
we assume that the microdiaphragm is made of silicon
and use the parameters, £ = 169 GPa and o = 0.358
along the (111) direction for single crystalline silicon
[14].

To test the model, a point load was applied at the center
of the diaphragm. As shown in Figure 5, the relation
between the displacement of the diaphragm (wg) at the
center and the applied load (F') was compared with the
analytical results for small deformation [12]

3Fa*(1 —1?)
_—— 1
W= T mEE (19)
and the first order solution for large deformation [12]

_ 3Fa*(1-17) _ 51 (1-vuf
" 4zE& 2592 d?

(20)
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Figure 5: Center displacement under a concentrated
load
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Figu:e 6: Effect of the pedestal size on the diaphragm
deflection (d/a = 0.05, h/d =1, and ¢=0)

It is seen that, the FEM results are in agreement with
equation (19) for small deformation up to about wp/d =
0.35. Beyond that, it deviates from the expression due
to large deformation. Equation (19) has been confirmed

experimentally within the elastic range for small defor-

mation {15}. The FEM results are approximately in
agreement with equation (20) of the first order solution
for deflection up to wg/d = 0.5.

Effect of pedestal size

To analyze the effect of the pedestal size on the relation
between the load and the diaphragm deflection, several
different pedestal radii were used. Figure 6 shows that
diaphragm deflection under the deformation condition
decreases with increasing pedestal size for both case I
and case IT. This is due to the increase of the diaphragm
bending stifiness by increasing the pedestal size. This
indicates that the critical load to initially drive the di-
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Figure 7: Dependence of diaphragm deflection on
pedestal thickness (d/a = 0.05, b/a = 0.1, and ¢ = 0)

aphragm increases with pedestal size and more energy
is required to operate the microvalve systems. The dif-
ference between case I and case II obviously is due to
the different loading conditions.

Dependence of the diaphragm deflection on the pedestal
thickness (k) under small deformation condition is plot-
ted in Figure 7. The diaphragm deflection decreases
with increasing pedestal thickness to h/d = 3, which
actually increases the stiffness of the microvalve. Fur-
ther increase in the pedestal thickness does not change
the diaphragm deflection magnitude - the pedestal can
be treated as rigid. This provides us a condition for
the design of the pedestal thickness, about three times
larger than the diaphragm thickness is required if we
want to ignore the effect of pedestal deformation on the
diapbragm deflection.

Effect of diaphragm thickness

One of the important parameters in the MEMS mi-
crovalve design is the diaphragm thickness. For small
deformation, the diaphragm deflection as shown in Fig-
ure 8 for both cases decreases with increasing diaphragm
thickness. Under the calculation conditions, h/a = 0.05,
b/a = 0.1, and ¢ = 0 and small deformation, the di-
aphragm deflection drops about one order of magnitude
when the valve thickness doubles. The increase or de-
crease of the diaphragm thickness dramatically change
the diaphragm bending stiffness, which is proportional
to the cube of the diaphragm thickness. Thicker di-
aphragms will require more energy input to operate;
while thinner ones may easily lead to the failure of the
systems, such as stiction and fracture. A compromise
between energy input and the lifetime of the microsys-
tem has to be reached for the design and fabrication of
the MEMS microvalves.
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Figure 8: Dependence of the diaphragm deflection on
the diaphragm thickness {(h/a = 0.05, b/a = 0.1, and
e=10)
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Figure 9: Effect of the edge size on the diaphragm de-
flection (h/a = 0.05, b/a = 0.1, and d/a = 0.05)

Effect of the edge size

In the actual design and fabrication of the MEMS mi-
crovalves, there is always a step at the outer edge as
shown in Figure 1 to support the diaphragm. The size
and deformability of the step will influence the deflec-
tion magnitude of the diaphragm and the function of
the microsystems. For simplicity, we assume the step is
rigid comparing to the silicon wafer and ignore the step
deformation in the following analysis.

For small deformation, the diaphragm deflection as shown
in Figure 9 for both cases decreases with increasing the
step size. It starts with 0.81 for case II and 0.71 for
case I without the step and decreases to 0.56 for case II
and 0.48 for case I at ¢/a=0.1. Figure 10 shows the de-
formation of the microidiaphragm for case II under the
condition h/a = 0.05, b/a = 0.1, d/a = 0.05, c/a = 0.1,
a =1 mm, and a pressure difference of 30 Pa. There is

Figure 10: Deflection of the microdiaphragm under case
II loading condition
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Figure 11 | von-Mises stress distribution inside the mi-
crodiaphragm under case II Joading condition

Little defiection for the layer of material above the step.
The step works as a constraint applied onto the micro-
diaphragm to control its mobility. This will increase
power consumption to operate the microsystem and the
stress concentration around the corner as shown in the
following stress analyses. However, it may reduce the
possibility of in-use stiction problem because a larger
force is required to keep the valve to adhere to the sub-
strate.

The von-Mises stress distribution inside the diaphragm
for case IT under the above conditions is shown in Figure
11. Stress concentration occurs at four different loca-
tions. The highest von-Mises stress is around the edge
of the step, in which the valve may fail mechanically
first. The minimum and maximum principal stresses
developed inside the diaphragm can also be found. The
downward diaphragm deflection creates maximum com-
pressive stress at the edge of the step and the corner
of the pedestal. On the other side, maximum tensile
stress occurs on the surface of the diaphragm above the
edge of the step and underneath the corner of pedestal.
Cracks can be initiated at the locations of the stress
concentration. This may lead to the mechanical fail-
ure of the microsystem. In addition, under the dynamic
loading condition, the stress status changes from com-
pressior 1o tension alternatively on the surface of the di-
aphragm. This may result in mechanical fatigue which
can be attributed to one of the failure mechanisms of
the microsystems.
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- CONCLUSION

Using simple plate theory, the deflection of the MEMS
microdiaphragm is studied analytically and numerically.
The bending stiffness of the microdiaphragm Increases
with increasing pedestal size. Larger bending stiffness
increases the corresponding energy required to initially
drive the valve and the energy consumption to operate
the microsystem. However, this reduces the possibility
of in-use stiction failure. Using the finite element pack-
age ABAQUS, we found that the effect of pedestal de-
formation on the diaphragm deflection can be neglected
when its thickness is over three time larger than the
pedestal thickness. Stress concentration around the cor-
ner of the pedestal and the step was found, in which
plastic deformation and crack can be initiated and Prop-
agated. This may result in local mechanical failure and
influence the lifetime of the microsystems. The rssults
provide us a basis to optimally design MEMS diaphizpgm
valves.
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