Simulation of Silicon Piezoresistive Sensors
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ABSTRACT

The temperature influence of the heavy doped sil-
icon piezoresistive sensors is simulated. In this simu-
lation, the density of state functions for impurity band
and band edge tail are taken into account for carrier and
ionized impurity concentrations, and the Fermi level is
determined by appling 2 Newton iterstion scheme for a
charge neutrality condition. The pier . -esistance factors
are calculated as parameters for the impurity concentra-
tion and the power law of the total relaxation time on
exergy. Simulation results for the ionized impurity scat-
tering show that the heavy doped silicon of the donor
concentration 10*7 cm™? and the acceptor concentration
3 x 10%° em~? reduces both the temperature coefficient
and the sensitivity of gauge factor by about 10%. We
can gain the signal to noise ratio if the température coef-
ficient is regarded as noise. Combined with recent result
on good linearity, we can show a guideline for the excel-
lent piezoresistive sensors design simulation.
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INTRODUCTION

We had made 2 graphical representation of silicon
piezoresistive (PR) sensors, in which the PR coefficients
were expressed as a function of crystal orientation, im-
purity concentration and temperature [1], [2]. In the
design of PR sensors the heavily doping procedure is
commonly adopted in order to surpress the temperature
noise. However, practical simulation on this approach
has not been exactly investigated yet. Our previous ap-
proximate Fermi level expression, in which the Fermi
integral and the square-root law for the density of state
were used, shows that the deviation of the calculated
values from the experimental ones occured for higher
impurity concentration. Nowadays, more precise simu-
lation on the heavily doping procedure is required from
sensor designers and users.

THEORY

The Fermi level is detemined by the charge neutrality
condition

p(F) + NZ(F) =n{F) + N3 (F) (1)
where n(F), p(F), Ni(F), and N} (F) are the total
electrons and holes, ionized acceptor and ionized donor
concentrations respectively, which are functions of the
Fermi energy F and given by the following equations:

n(F) = [ " fopndE @
WF) = [ - fepam 3)
+ = Np
N_D = ND.fD'- 1+26XP(F;?D') (4)
Ni = Nafa N4 (5)
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where fp is the Fermi-Dirac distribution function, E is
the carrier energy, & is the Boltzmann constant, T is the
temperature, F is the Fermi energy, p, and p, are the
density of state functions of n- and p-type materials, Np
and N, are the donor and acceptor concentrations, and
Ep and E,4 are the energy levels of donor and acceptor,
Tespectively.

In this computation, equation (1) is solved by means
of a Newton-iteration scheme until a consistent solution
is reached. The flow-chart is shown in Figure 1. The

~ integrals appeared in the calculations of carrier concen-

The purpose of this paper is to investigate the tem- -

perature influence of the heavy doped silicon PR sensors
by means of computer simulation.
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tration are same as the Fermi integral except for that
the density of state functions are used in stead of the
square-Toot density of states and the limits of the inte-
grations extend to the impurity band energy.

Density of State Function

At high impurity concentrations, the impurity atoms
interact with each other, so that the wave functions of
their associated electrons are going to overlap, which:
causes a spliting of the impurity energy levels and results
in the formation of impurity band. The shape of this
impurity band has been calculated by Morgan [3] as
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Figure 1: Flow-chart of the computation scheme.

follows,

pi(E) = 2Np (2702 exp (*M) ©
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where o, is the effective standard deviation of the im-
purity band:

e = (1.03)0 exp(—(11.38067 X3 (Np + N4))~2/2) (1)

where ¢ is the standard deviation of the impurity band:

2ngt 1/2
o:( = ) AIIZ(ND+NA)”2 {(8)

where ¢ is the electron charge and ¢ is the parmittivity
of silicon. And A is the screening length and character-
izes the local potential, which for non-degenerate mate-
rial where Boltzmann statistics can be applied, reduces
to the well-known Debye length /kT¢/q?(INp + V. A)s
while for degenerate material where Fermi-Dirac statis-
tics can be applied, depends on (Np — N )1/,

The local potential of high impurity concentration
makes formation of a band tail, instead of a well-defined
band edge. According to the theory of Kane [5] and
Bonch-Bruyevich [6] the modified density of state func-
tion p. of the conduction band becomes,

pc.(E) = m:3/2(23/20')1/27r'2h‘3y (0_?/__2-) (9)

where
y{z) = W'I/Qf {z — u)V/2 exp(~u?)du

where % is the Planck’s constant divided by 27 and
m, is the effective electron mass. The corresponding
equations for holes are obtained by replacing m; by
m;, (Effective hole mass) , Np by N 4, and Ep by E,4,
and modifing direction and reference of the energy defi-
nition in the above equations. The density of state func-
tions versus energy are shown in Figure 2. Total density
of states function is then given by the envelope of p; and

Pe-

RESULTS
Fermi Energy

The calculations for Fermi level, the carrier concen-
trations and the ionized impurity concentrations in a
equilibrium state of heavy doped silicon are made when
the values of Np, N4, and temperature are given as pa-
rameters. Somme of these computation results are shown
in Figures 3 and 4, in comparison with a result of the
Fermi integral calculation which we discussed in the pre-
vious paper (1] and shows that the material is degenerate
in the concentrations higher than about 3 x 101%am—3.
As shown in this figure, Fermi levels calculated by means
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Figure 2: Density of state functions versus energy for
impurity compensated silicon (N4 = 1017 em =3, Np =
10 cm™ and Ny = 1047 em=3,Np = 10'° em™2).
The energy is chosen zero in the conduction band edge.
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Figure 3: Concentrations of electron, hole, ionized ac-
ceptor, and ionized donor versus the acceptor concen-
tration. The donor concentraiion is 1017em 3.
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Figure 4: Fermi levels versus impurity concentrations.
The acceptor concentration or the donor concentra-
tion is 107em™2. Our previous results are denoted as
"Square-root Law”. The plots denoted by ”Effective”

are the results by use of the effective band edge.

of the density of state functions are abnormally satu-
rated in higher impurity concentrations. This effect -
should be attributed to a view that the band edge en-
ergy of heavy doped material becomes dir: and is no
longer same as the well-defined band edge ¢nergy. In
view of this we re-define the effective Fermi energy such
that the calculated major carrier concentration equals
the general Fermi integral. The result of this calcula-
tion is also shown in Figure 4, in which the band edge
energy for the effective Fermi energy is not absolute but
is just relative. The effective Fermi energy will be used
in the computation here.

Piezoresistance Factor

The first order PR coefficient 7 is defined by

Ao,
Ge

=P (10)
where o, is the conductivity and P is the stress.

According to the general carrier tramsport theory,
the conductivity depends on the carrier concentration,
and consequently depends on the impurity concentra-
tion and the temperature. The PR coefiicient with im-
purity concentrations (Np, N4) and at temperature T’
can be written in the form
W{ND,NA,T) =p(ND!NA=T)?r(3GG K) (11)
where P(Np, N4, T} is the PR factor which is given by
the Fermi integral F as follows,

300 Fo(1/2)(F/ET)

PN, Ny T) = 7 FRTY

(12)



Plazgresislance Factor

where s is the exponent appeared in the relaxation time
T = 1pE°®, which is shown in Table 1 for typical scat-
tering mechanisms. Calculation results of the PR fac-
tor are shown in Figure 5 for various acceptor concen-
trations. As shown in this figure, the PR factor does
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Figure 5: Piezoresistance factor versus acceptor con-
centration as parameter for scattering mechanism. The
donor concentration is 1017 em=3,

not depend on the scattering mechanism and becomes
1 in lower impurity concentrations because Boltzmann
distribution function becomes good approximation and
Fi(F/kT} = exp(F/kT), while in higher impurity con-
centrations-where the material is degenerate, reduces
prominently and weekly depends on the scatiering mech-
anism. The simulation result for various scattering mech-
anisms shows that the PR factor becomes the largest for
the impurity scattering.

Temperature Coefficient

The temperature coefficient {TC) is defined as the
coefficient when the PR factor is expanded by tempera-
ture {7].

P(Np,Na,T) = P(Np, N4, 300 K)(1 + SAT) (1)

where AT =T —300( K) and 2 is the TC. The simula-
tion result of the TC is shown in Figure 6 as parameter
for scattering mechanism.

It is known from the general theory of the PR co-
efficient that the TC is inversively proprtional to —T
at lower impurity concentrations. For example, the TC
becomes —0.0033 at 300 K. However at higher impu-
rity concentrations, this situation becomes different. As
shown in Figure 6, the calculation results show that the
TC decreases with the impurity concentration, that is
just the reason why we use the heavy doped material in
order to surpress the noise attributed to the termperature
flickering, also the TC is going to depend remarkably on
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Figure 6: Temperature coefficient versus acceptor con-
centration as parameter for scattering mechanism. The
donor concentration is 1017 em=3.

the scattering mechanism with the impurity concentra-
tion. It is worth noiticing that the temperature coef-
ficient for the phonon scattering becomes the smallest
among other scattering mechanisms.

- DISCUSSION

In our previous study [1], the PR factor for heavily
doped p-type silicon was discussed with the experimen-
tal values of Mason et al. {8] in which the strain gauge
factor was used. The strain gauge factor G is commonly
used to characterize the strain sensor, which is defined
as the fractional change in resistance AR/Re per unit
strain and is given by

G=(AR/Ry)fe=1+20+Y¥Yn (14)

where ¢ is the strain, v is the Poisson’s ratio and ¥ is the
Young’s modulus. In this relationship the PR coefficient
can be obtained from the experimental gauge values.

Now we shall again discuss with the presently com-
puted PR factors. Reduction ratios of the PR, factor,
which are defined by the ratios of the PR factor for
acceptor conceniration of 3 x 10'® &% to that for
5x 108 em™3, are tabulated in Table 1 for various scat-
tering mechanisms, in comparison with the experimental
value and our previous result. The present computation
results show that the PR factor for the phonon scat-
tering is better agreement with the experimental value
than the previcus one.

For sensor design, it is desired to decrease the tem-
perature coefficient and increase the PR factor. Accord-
ing to our simulation results the two requirements con-
tradict each other, but if we regard the noise as the
temperature coefficient the signal to noise ratio becomes
almost same in all cases. Then if we need a smaller tem-
perature coeffieint, a heavily doped material is available



Table 1: Reduction ratios of the PR factor according to heavily doping and scattering exponents of the relaxation

time for typical scattering mechanisms.

Scattering Mechanisms 5 Reduction ratios of the PR factor
Experiment Previous Present
Impurities Ionized E - 0.91
Neutral 0 - 0.80
Acoustic phonons  Deformation potential -—% {0.63) 0.44 0.73
Optical phonons  Deformation potential ~ -1 0.44 0.73

without failing the signal to noise ratio.

In the general computation scheme of the relaxation
time it is necessary to consider several scattering pro-
cesses for a given temperature at the same time. The
magnitude of each scattering prosess has the temper-
ature dependency and the power low on energy. The
relaxation times for the impurities scatterings can be
calculated from NI and N o obtained by the present
computation procedure. The total relaxation time can
be obtained by adding the reciprocal relaxation time for
each scattering process,

1
=y

)

(15)

where 7; is the relaxation time of each scattering process.
These calculations, however, are needed to determine
more accurate PR factor for wide temperature range
remain as a future ploblem.
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