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Abstract

This paper presents a novel inductance extraction
procedure which is based on a Monte Carlo sampling
technique. Partial inductances for static current dis-
tributions can be computed efficiently and with smali
memory requirements, thus enabling the treatment of
large and complex three-dimensional geometries. The
convergence behavior is discussed and examples are pre-
sented along with a comparison to the Fasthenry code
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Introduction

With increasing signal frequencies inductive effects
of electrical interconnections in all kinds of packages be-
come more and more important for the performance of
a circuit.” During the design process it is therefore of
interest to have a stable, fast and accurate simulation
tool which is capable of extracting self and mutual in-
ductances of large and complicated geometries.

The formulation which is presented here is limited to
static inductance extraction, i.e., the skin effect is not
considered. However, the skin effect can be neglected
for a large class of applications where the conductor di-
ameter is small compared to the skin depth
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which is a measure of how deep the electromagnetic field
penetrates info a conductor.

The inductance extraction procedure consists of two
main steps that are quite independent of each other: 1}
Computation of the current density distribution in the
conductors, 2) Computation of the magnetic energies
associated with the self- and mutual inductance terms.

The computation of the current density distribution
is not in the main focus of this paper as it is a standard
problem involving the solution of a Poisson equation.
Any existing program can be used for this part. For the
examples presented here, the commercial tool SOLIDIS.
ISE has been used for this step. SOLIDIS-ISE is a finite
element solver with efficient adaptive refinement capa-
bilities.

The computation of the magnetic energy W from the
available currept density distribution is accomplished by
evaluating Neumann’s formula [2]:
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by means of 2 Monte Carlo sampling technique. V and
V' denote the volume of the conductor, » and 7' are
locations in these volumes.

Self Inductance

The self inductance L of a single conductor is related
to the magnetic energy W by
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W is calculated with a sample mean Monte Carlo method
[3]. For every sample the two locations r and r’ are cho-
sen randomly somewhere in the conductor in the follow-
ing way: First, an element of the conductor, correspond-
ing to the finite element of the grid used for the compu-
tation of the current density, is chosen with probability
proportional to the volume of this element. After that,
the location inside the selected element is chosen with
constant probability density. The current density in the
element is calculated from the derivative of the electric
potential in the center of the element and is therefore 2
constant in every grid element.

Inductive Coupling

In case of multiple conductors, the mutua] inductive
couplings are also computed. With least computational
effort current distributions in the conductors are com-
puted for a given voltage difference between the contacts
at their ends. For N conductors, N different current
distributions J; withi = 1,...,N are computed. .J; is
the current distribution for 1V voltage difference across
conductor £, 0V across all other conductors. The energy
computation 1 is now modified.
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Here W; is the potential energy of current distribution
Ji in the magnetic field of current distribution J; or vice
versa and therefore Wy; = Wj;.
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The inductive behaviour of N conductors is deseribed
with a matrix L where the diagonal entries L; are the
self inductance of the conductors i, whereas the off-
diagonal entries L;; stand for the inductive coupling be-
tween conductors ¢ and j. In order to use the relation be-
tween energy and inductance (2) for the multi conductor
case we define current vectors [; withi = 1,...,N. The
kth element of vector I;, i.e. Iy, is the current through
conductor k for current distribution J;. The energy W;
{3 in terms of inductances becomes now

Wz'j = %IFLIJ

or, when defining a current matrix I with columnps I; in
matrix notation

W= %ITLI (4)
Since W is symmetric 1/2N(N + 1) energy terms Wi;
have to be calculated. With also I known, the induc-
tance matrix L can be calculated by matrix inversion.

Note that this formulation also holds for conductors
with more than two contacts.

Error Estimation

The computational error involved in the procedure

described above is caused mainly by two different sources.

One is the approximative nature of the current density
obtained from the finite element computation. A second
source of maccuracy is the subsequent energy calculation
by statistical means. While the accuracy of the current
density calculation can be improved by refining the grid
or by using higher order discretizations, the error made
in the evaluation of the magnetic energy terms is depen-
dent oniy on the number of samples, i.e., the number of
Iterations used in the Monte Carlo procedure.

The statistical error in the calculation of the mag-
netic energy can be estimated from the number of iter-
ations and from the variance of the sampled values [3].
Due to the iterative nature of the Monte Carlo proce-
dure, the sampling process can be stopped once a spec-
ified accuracy has been achieved.

Convergence

Some interesting aspects of the convergence behavior
become apparent when studying geometries of different
dimensionality. To demonstrate this, three example ge-
ometries have been analyzed (see Figure 1). Geometry
“A” is a long conductor (1D case), “B” is a flat planar
conductor (2D case), and “C” is a cube-like conductor
{3D case). All geometries are in fact three-dimensional
discretized objects, but the aspect ratios are chosen in
such a way as to simulate the behaviour for quasi one-
dimensional and quasi two-dimensional geometries. In
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Figure 1: Geometries A, B and C for which the indue-
tance is calculated with Monte Carlo sampling.

all three cases, a homogeneous current density in the
conductor has been assumed.

In the course of the Monte Carlo sampling procedure,
the integral (1) is calculated only approximately. After
n iterations the value obtained for the energy W, ~ W
is

1 1
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which is actually an approximation for the expectation
value of the inverse distance distribution. Figure 3 shows
the statistical distribution and the expectation value of
the inverse distance 1/|r — r'| for the three cases. In
the three-dimensional case (case “C™), the expectation
value is very close to the most probable value, i.e., to the
peak of the inverse distance distribution. This distribu-
tion also has the largest peak value. The maximum of
the distribution decreases in case “B” and “A” and the
distance between the expectation value and the most
probable value increases. This suggests that the conver-
gence of the Monte Carlo iteration should be guickest in
the 3D case. To verify this, the inductance computation
has been performed according to (5) for all three cases.
The convergence history is shown in Figure 2. As can
be seen in the figure, fastest convergence occurs in the
3D case, as expected.

A suitable quantitative measure for convergence and
error estimation is the standard deviation ¢ of the sam-
pled values. The probability of an error larger than
3o/+/n is smaller than 1 percent. This “3¢-criterion” is
used for the calculation of the error estimate during the
iteration process.

The expectation values shown in Figure 3 correspond
to the inductances of the corresponding geometries. Note
that the inductance of an ideal one-dimensional wire is
not defined, but, as mentioned before, case “A™ is not
really an infinitesimally thin wire but a wire with small
but finite thickness,

As a consequence of these observations, it can be con-
cluded that the convergence rate of the Monte Carlo pro-
cedure is strongly dependent on the conductor shapes.
Thin wires and thin plates will tend to have slower con-
vergence because the expectation value and the most
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Figure 2: Running average of inductance divided by the
analytical result for geometries shown in Figure 1. The
standard deviation ¢ of the sampled normalized values
is also shown.

probable value of the inverse distance distribution are
not as close together as in the case of geometries that
are extended equally in all three dimensions.

In addition to the influence of the geometrical shape,
the convergence behavior is also s:rongly affected by in-
homogeneities in the current densizv distribution.

Example Bond Wire

Figure 4 shows the electric potential in a bond wire
after a grid refinement step. Regions with strongly vary-
ing gradient have been refined. Figure 5 shows a cut
through the model with the amplitude of the corre-
sponding current demsity. A magnification of the re-
gion around the right contact with current direction dis-
played is shown in Figure 6.

Figure 7 shows the running average of the inductance
during five different computations. Figure 8 shows the
corresponding standard deviation divided by the run-
ning average. This value becomes stable after ~ 50.000
iterations.

The corresponding error estimate is shown in Figure
9. 150.000 iterations take 220 secs time. The final re-
sult is given with 2 percent accuracy. A result with 5%
accuracy is already obtained after 25.000 iterations, i.e.
after 35 secs.
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Figure 3: Distribution of values 1/jr —r'| on a line with
length 1 (1D), on a square shaped surface with area 1
(2D), and on a cube with volume 1 (3D). For the com-
putation of the distributions in each case = 250.000.000
terms were taken into account. Locations r and + were
taken from regularly distributed coordinates. The dis-
tributions are normalized. The expectation value of ev-
ery distribution is marked with a dashed kine.

Figure 4: Electric potential in a bond wire model. The
grid was adaptively refined.

Figure 5: Cut through model of bond wire in 4. Here
the magnitude of the current density is shown.
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Figure 8: Standard deviation divided by the running.
average (Figure 7). Used for computation of an error

Figure 6: Magnification of area around the right contact estimate.

in Figure 5 and direction of current density distribution.
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Figure 9: Running error estimates (relative error) for

Figure 7: Running average of inductance during Monte . .
inductance values shown in Figure 7

Carlo sampling. Five different computations are shown.
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Figure 10: Structured grid model of a via. Grid lines
intersect vertically. Electric contacts are also shown.

Comparison with Fasthenry

The algorithm of Fasthenry has been published in [1].
Fasthenry modeis are constructed following the proce-
dure published in [5]. Constraints of Fasthenry are it’s
brick shaped elements and that bricks cannot overlap
when they are inclined at an angle other than 90 de-
grees. This is why the bondwire shown in the preceeding
section could not be modeled with Fasthenry without 2
change of the geometry.

The comparison is carried out with the via structure
shown in Figure 10. In order to compare the methods
for different model sizes, this grid has been refined by di-
viding every element into more elements all of equal size
and shape. The number of divisions is indicated in Ta-
ble 1. Values L31, Los and L2 denote the inductance of
conductor 1, 2 and their inductive coupling respectively.
Energy terms W; (3 are calculated with 1% accuracy.

Both methods give almost correct -=sults for even
the coarsest discretization of the model. In case of small
models Fasthenry is a lot faster than the Monte Carlo
code. But with increasing model size Fasthenry becomes
slower and memory demand increases. Memory demand
of the Monte Carlo code is much smaller for bigger mod-
els and the time break-even is reached at a model size
of around 2.000 degrees of freedom.

Conclusion

It has been shown that the computation of the mag-
netic field energy of a given current distributions with
Monte Carlo sampling can be used for inductance ex-
traction for cases where the skin effect is negligible. The
method is applicable for any given current density dis-
tribution. The convergence rate depends rather on the
shape of geometries than on the number of grid ele-
ments. Convergence becomes slower for geometries with
high aspect ratios and faster for cube shaped geometries.

Model sizes are limited by the amount of computer
memory needed during the computation of current den-
sity distributions. This involves the solution of a sparse
matrix eguation only. During Monte Carlo sampling
only the geometry and the current density information
have to be stored in memory. This maies it possible to
set up models with a much higher number of degrees of
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freedom than possible with Fasthenry where Fasthenry
also models the skin-effect.
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Solver | divisions | Deg. of freedom | Ly, L1z Ly, | Time Merm.
fh i 14 2.085 1.068 1 1.714 0.5 0
mc 1 84 1.904 | 9.647 | 1.506 | 50.5 mc360 s0 me3
th 8 236 2.029 1.032 | 1.645 12 6
mc 8 399 1.957 | 9.976 | 1.576 52 mc375 s8 mc3
ih 27 1026 2.0136 | 1.024 ; 1.627 165 22
mc 27 1096 1.998 1.014 | 1.595 s6 mc368 $12 mch
fh 64 2624 2.007 1020 | 1.618 870 68
mc 64 2325 1.991 1.012 | 1.596 | s12 me377 s18 mc8
th 125 5350 2.003 1.018 | 1.614 2518 136
mc i25 4236 1.987 | 1.012 | 1.601 | s26 mc383 | 529 mcl3

Table 1: Comparison between Fasth
. refinement, indicated by ‘divisions’
the number of meshes in the Fasth
the finite element matrix for computatio

is given in MB. Time and memory dem.

with an ’s’, values for the Monte Carlo solver are marked with me’.
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enry (fh) and inductance extraction with Monte Carlo sampling (me). The grid
» Is different for every simulation. Degree of freedom in case of Fasthenry denotes
model. In case of the Monte Carlo solver degree of freedom denotes the size of
n of the electric potential. Time values are given in seconds. Memory demand
and are given separately for the mc solver. Values of SOLIDIS-ISE are marked



