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ABSTRACT

At systems level, however, the extreme complexity of FEM
models (many network nodes, long computer times) requires
the use of models detenmined analytically. As the complexity
of the search space of such analytical models becomes very
high already if only a few sizes of a microsystem are treated,
manually controlled simulations for only a few design vari-
ants, as a rule, will not result in optimum systems designs.
Part-automated design optimization can be achieved by re-
placing human operators by a tool which studies the param-
eter space of the systems parameters. Human activities, in
this case, are reduced to predefining an evaluation (a descrip-
tion of the quality goals and priorities). The tool then directs
the search into that part of the parameter space in which op-
timum design variants can be found. Part-automated design
optimization does not depend on a type of model, as only val-
ues of formal parameters are exchanged between thz simula-
tor and the optimization tool. The convergence reliz ity of
a traditional numerical method is compared with a hsuristic
search technique in an example ¢! dzsign optimization.

Keywords: Analytical Model, Design Variants, Design Op-
timization, Heuristic Search Technique.
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INTR{ DUCTION

in engineering and physics, complex objects are first mod-
eled, and a system of regularities, e.g. in the format of

higher degree of mode] abstraction linking components can
be described by analytical models, which lead to much short-
er computation times with a circuit simulator. These anaiyti-
cal models can both be adapted to FEM component models
and combined into systems models, and then improved by
preset optimization goals, by means of a suitable search tech-
nique improving their quality [1].

Our search technique can be used also on other design prob-
lems, for instance, in the field of optics. One example of such
an application will be given in the next chapter.

The techniques listed above are supported by the open tool
environment developed at the Institute for Applied Computer
Science of the Karlsruhe Research Center, SIMOT (Simula-
tion and Optimization Tool Environment) [2] (Fig. 1).

OPTIMIZATION OF A MICRO-OPTICAL
COLLIMATION SYSTEM

Many micro-optical applications require modifications in the
ermssion characteristics of sources (in general, lasers or op-
tical fibers), ie. their collimation or focusing [3]. This is
done by micro-optical lenses or combinations of various
lenses.

The system described here uses two ball lenses to collimate
the emission from a single-mode {iber (SMF) and image the
collimated waist of the beam onto a photodiode (Fig. 2).

mathernatical equations, is then set up with these mod-
els. A model is considered correct if the conclusions re-
sulting from this step (e.g. simulation results) are in
agreement with the phenomena observed in nature (e.g.
measured resulis).

This approach must be used in the development of
microsensors and microactuators because these micro-
systems are very complex as a consequence of the re-
quired high functionality on a miniznum of space (chip
size), and also because of the sophisticated manufactur-
ing technigques. Consequently, the mamufacturing step
should be preceded by simulation models, the simulation
results of which may constitute a basis for making a lab-
oratory specimen.
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Measurements conducted on laboratory specimens, in
turn, furnish data for comparison, thus allowing the
model and the Iaboratory specimen to be validated.

Systems design on the physical level by means of FEM
simulation models normally is feasible only for systems
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components, because of the rapidly growing complexity
of the model and the resultant long simulation times. A

Fig. I:
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Flowsheet of the automated design optimization using the
SIMOT tools GAMA and GADO



SMF 1st BALL LENS Znd BALL LENS PHOTODIODE

Lens Distance: [80...1400um)

beam width at the ocation of the photodiode
photodiode diameter

minimum beam width at the photodiode
maximum beam width at the photodiode

Numination: [80...100%]

Stability: [>90%)]

Waist Position: position of the collimated beam waist {4000...4600um]

Fig. 2:  Basic diagram of the collimation system made up of a single-mode fiber (SMF), two ball lenses, and a
photodiode. The upper part of the figure shows the optimization parameters, ni, n2, and z, while the
bottom part shows the evaluation criteria, lens distance, illumination, stability, and waist position.

In the ideal case of geometric optics, under certain condi-
tions, another lens can be found for each ball lens of a specif-
ic focal length; in this way, any emission can be generated.

Unlike this ideal case, also tolerance effects are to be consid- -

ered which arise from the incorporation of optical elements
into prefabricated LIGA structures [4] (Fig. 3). These incor-
poration tolerances affect the beam width at the location of
the photodiode and also affect the location of the waist of the
beam. A collimation system is to be determined pow which
is as insensitive as possible to the expected inaccuracies, due
to Incorporation of the individual elements.

The systems parameters which can be varied in the optimiza-
tion calculations are the indices of refraction of the two bail
lenses (n1 and n2), and the distance between the fiber feeding
light into the system and the first ball lens (z). The optimiza-
tion parameters defined are illumination, stability, position
of the beam waist, and distance between the lenses.

Description of the optimization parameters:
- Hlumination: Hlumination is defined as the

of tolerance effects are minimized.

- Beam waist position: The optimum value of this parame-
ter is 4300 esponds to the distance between the second
ball lens and the photodiode. This optimization criterion
ensures that the collimated beam waist is imaged onto the
photodiode,

- Lens distance: The distance between lenses was intro-
duced as a criterjon in order to define a size limit of the
whole system. The values aimed at should be in the range
between 80

THE OPTIMIZATION CONCEPTS

The techniques used for automatic optimization can be sub-
divided into two categories:

- Traditional numerical methods.
- Heuristic search methods.

quotient of the maximum beam width at the
position of the photodiode and the diameter of
the photosensitive region of the photodiode.
The goal of optimization with respect to illu-
mination is a value of 0.9 to prevent bianket-
ing of the photodiode in case of lateral beam
displacement.

- Stability: Stability is defined as the quotient
of the minimum and the maximum beam
widths as a function of tolerance effects. The
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goal of optimization with respect to stability
is a level close to 1 so that fluctuations in the
ithmningtion of the photodiode as a fimetion
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Fig. 3: Hlustration of the incorporation tolerances (2D case)



These methods or, more correctly, optimization algorithms
in general can be assessed in the light of these criteria;

- Convergence reliability
(a2 measure of the probability of a satisfactory sohztion be-
ing found).

- Convergence rate
(indicating the time required to solve an optimization
problem).

- Boundary conditions
(conditions imposed upon the optimization problem by
the technigue).

The two types of possible optimization functions described
in Fig. 4 as a function of a characteristic value can be used,
for instance, to indicate the different convergence reliabiti-
ties of traditional and heuristic optimization techniques.

These two types of functions can occur especially also in the
optimization of microsystems. As a rule, optimization func-
tions have one optimum and a large number of suboptima
(multimodal function as iu Fig, 4, left diagram). Restrictions
in the search space and characteristics of the system may give
rise to discontinuities in the solution space (Fig. 4, right dia-

gram}).
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Fig. 4: Two itypes of possible oprimization
Junctions '

Traditional approaches, such as the gradient method, will
find only local optima (see diagrams, point 2) when starting,
for instance, from solution 1 {see diagrams, point 1). On the
other hand, the use of appropriate heuristic search methods
promises that the global optirmumm will be found with very
high probability (see diagrams, point 3). So, convergence re-
liability is higher in our heuristic technique than in the tradi-
tional mumerical processes especially in the two typical
examples shown here, which will corroborated by a compar-
ison in Chapter 4.

Traditional Numerical Techniques:

One traditional numerical technique is the iterative gradient
method. In optimizing given problems, gradient methods use
the local gradient of a function in order to find the optimum
of that function. In principle, these search methods are deter-
ministic methods successively generating results each of
which is based only on the preceding one. These methods are
subject to 2 number of restrictions: .
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- The problem to be optimized must be a steady-state prob-
lem, which means that derivations of the function repre-
senting the search space must exist.

- Gradient methods find only the local optimum in the vi-
cinity of the instantaneous point. The global p1cmre of the
search space remains obscure,

Combining the approach of random searching with the gra-
dient method offers the possibility to scan the search space
with different, randomly chosen initial conditions. Also this
approach offers no guarantee that the global optimum will re-
ally be found; however, at least it provides information
about the existence or absence of suboptima.

Heuristic Search Methods:

The GAMA and GADO tools used in SIMOT [5] are based
on heuristic methods and have been under development at
the Karlsruhe Research Center since 1988. The tools are
components of the GLEAM/AE application and experimen-
tal environments and are based on the GLEAM (Genetic
Learning Algorithm and Method) evolutionary algorithm
[6].This algorithm is based on both the genetic algorithms es-
tablished by J. Holland through his studies of adaptive sys-
tems [7}, and on the evolution strategies established by L
Rechenberg {8] and H.P. Schwefel [9].

The phylogenetic development of living beings from lower
to higher forms is an example of an evolutionary process.
This development process is based on genetic and evolution-
ary mechanisms changing the characteristics of living be-
ings. In the formal description of these development

processes, living beings are referred to as individuals. The to-

tal population of individuals of one species in a specific geo-
graphic space is called a population. Genetic processes, such
as mutation and recombination, contribute to modifications
in individuals. Mutations cause spontaneous changes in the
hereditary materfal. Recombination is the new combination
of hereditary factors, i.e., the exchange of hereditary factors
of two individuals. Th.IS gives rise to new progeny. This
progeny is subject to a selectzon process in which progeny of
higher quatity has a better chance, in turm, to generate prog-
eny and in this way pass on its hereditary characteristics to
the next generation. Fvolutionary algorithms are an abstrac-
tion of these fumdamental evolutionary principles.

In genetic algorithms, an individual corresponds to a design
variant, 1.e., all relevant characteristics of a system (system
parameters) are described in this individual by a specific data
structure. In & mutation, a characteristic is changed, for in-
stance, by a random number generator. In a recombination,
some characteristics (data) of two individuals are exchanged.
Selection allows individuals with good characteristics to pass
these on to their progeny with a higher degree of probability.
In this way, the quality of individuals may rise from genera-
tion to generation.

Also evolutionary strategies begin with a population of mdi-
viduals. However, an individual contains not only design
characteristics, but also additional information about the so-
called mutation step lengths which act as strategic parame-
ters. The mutation step lengths specify the standard deviation
of a normally distributed random variable with the expected



value of zero, thus raising the probability of minor
variations occurring. A recombination of two parent
parts can be achieved either in the design character-
istics by a random mix of several parent parts or in
the mutation step length, i.e., by averaging the two
parent parts. In the subsequent selection step the best
individuals are selected either from the parent/prog-
eny generation or only from the progeny generation.

Evolutionary algorithms are general methods of
planning and optimization, and their use is advanta-
geous whenever very many parameters must be pro-
cessed and local optima, perhaps also additional
restrictions and discontinuities, exist. Especially in a
non-linear, muitimodal, and discontinuous optimiza-
tion function, traditional methods may well cease to
be effective (see above). The use of evolutionary al-
gorithms makes sense especially in those cases in
which nothing is known about the specific problem
at hand (evaluation space). However, existing previ-
ous knowledge may be imtroduced to reduce the op-
timization time. On the other hand, evolutionary
algorithms do not impose any conditions upon the
evaluation space (optimization function, quality cri-
terion), such as continuity or differentiability. These
properties of evolutionary algorithims may turn out to
be advantages over traditional opfimization iech-
niques, because traditional techniques, such as the
gradient method, presuppose mathematical knowl-
edge about the optimization problem.

Unlike traditional methods, evolutionary algorithms
do not start from one solution only, but from an entire

population containing several individuals (solu-

tions). As in biological development, several snb-
populations may exist at the same time. In this case,
the search departs from various points located within
the search space. The result of the search in that case

Fig. 5: Flowsheet of the GLEAM evolutionary method

will not be only one solution, but will be made up of several from those of any local optima that may exist. However, if
solutions whose number may be preset. These solutions may there are several local optima of similar quality, the solutions
exist at roughly the same locations in the search space, pro- may be spread about these optima in the search space.
vided there is a global optimum whoese quality differs greatly '
100 Optimization eriterion "Mlumination™ 100 Optimization criterion "Stabiiity"
Unweighted grade i(G) —_ ! : Unweighted gra.de (G) — ‘
80 F oo e — 4 80 - E
g et 48 et
& Ll 15 .l ]
20 + - . 20 | .
1} i - 1_ > 0 . i i
1] 50 20 1oc 150 200 il 20 40 L] 8¢ 100
Tiumination [%] . Srabilizy [%4]

Fig. 6: Evaluation function of two criteria

347



Index Criterion Class . Max grade
1 Lens distzance 1 10000
2 " Illumination 2 25000
3 Waist Position 2 25000
4 Stability 3 40000

Reguired grade Required value

8000 80-1400 pum
14216 80-100 %
8333 4000-4600 pm
19229 90 %

Fig. 7: Muin criteria evaluation function

The approach used in GLEAM can be broken down into two
steps (see also Fig. 5):

- Initialization and evaluation of the starting population.

- Generation of new follow-on generations by means of
evolutionary mechanisms (mutation, selection, recombi-
nation...).

The second step is executed until a break-off criterion de-
fined by the user has been reached.

The large mmmber of simulations necessary in this heuristic
search technique has caused less attention to be devoted to
this process than to other optimization methods becanse of
the low convergence rate. However, the optimization time
can be reduced drastically by parallelization, i.¢., the use of
several computers in a computer network. Also the progress
made in computer power reduces optimization titnes, thus
furthering the use of some of these techniques.

The high convergence reliability inherent in these tech-
nigues, as they are based on not only one, but several solu-
tions, would favor the use of these methods especially in
problems where traditional methods are no longer effective,
More precise studies of this aspect were conducted witk: the
example of the "asymmetric traveling salesman probiem”
[10].

The Qualityfunction of the Collimation System

As input for the optimization tool GLEAM the designer has
1o describe the evalution criteria in form of a multi criteria
evaluation function. In Fig. 6 two criteria are given.

Fig. 7 shows the combination of all criteria, which have dif-
ferent priorities and different weights (given by the desion-
er).

Fig. 8 describe the evaluation of the best individual estimated
by the heuristic search.

RESULTS

Fig. 9 and Tab. 1 shows the result of the evolutionary GADO
method used as compared to the results of the iterative gradi-
ent method. While an optimum result was found with GA-
DO, the optimum values determined by the gradient method
clearly differ from each other. The result of GADO (with
high probability) represents the global optimum of the opti-
mization function. The iterative gradient method, however,
arrived at various local optima because of the muliimodal na-
ture of the optimization function as a function of the initial
values.

As there are a random number of configurations achieving
the desired collimation in an ideal case, as described in Sec-
tion 2 above, there are also a random number of suboptima
or, to illustrate the point more graphically, a random number
of islands in the sea of the search space. A method of optimi-
zation, such as the iterative gradient method, which takes
into account in its calculations only the immediate vicinity of
the point under consideration, can furnish only local optima
in such 2 multimodal optimization function.

Design Parameter: Simulation results:
Refraction lens 1: Lens distance: 948.408 um
ni : 1.82 Illumination: 89.90 %
Refraction lensg 2: Waiet position : 4300.7 pm
n2 1.53 Stazbility : 91.1 %
Distance SMF to lens 1:
-4 : 565.3 um
Evaluation:
Index Criterion Class Weight [%] unw., grade min grade weighted grade
1: Lens distance: 1 10 100000 8000 10000
: Illumination: 2 25 100000 14216 25000
3 Waist position: 2 25 100000 8333 25000
4: Stability: 3 40 52577 1822¢ 20775
Total grade 8073

Fig. 8: Evaluation of the best individual estimated by the heuristic search
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Table 1: Comparison of two optimization methods

In order for the global optimum to be found, methods must
be employed which are able to deal with multimodal search
spaces, such as evolutionary algorithms.

OUTLOOK

The comparatively large number of simulations (several
10,000) still required for evolutionary algorithms limit the
possibilities fo use this otherwise rather promising method.
For this reason, modifications are currently being prepared
and tested which are intended to reduce the number of simu-
lations while preserving convergence reliability. In addition,
SIMOT is continuously added further simulators in accor-
dance with applications.
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