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ABSTRACT

In this article, numerical methods for modeling pho-
tonic devices having coupled electrical and optical fields
are presented. The governing equations characterizing
the problem are presented as well as algorithms for com-
puting numerical solutions. The coupling between the
electrical and optical field is introduced as a generation
or recombination term for the drifi-diffusion model. The
mimerical results of a semiconductor laser device which
is under investigation for use in all-optical communica-
tions systems are also given.

Keywords: Device modeling, photonic devices, semi-
conductor lasers.

INTRODUCTION

Semiconductor modeling plays an important role in
the industrial development cycle. Although for generic
semiconductor devices several modeling tools are nowa-
days available, for photonic devices this is generally not
the case. Peculiar to these devices is the coupling be-
tween electrical and optical fields which plays an im-
portant role in the device behavior. The treatment of
this coupling and the computation of numerical solu-
tions may be considered a complex task, also because
a global modeling concept it is not available. In this
work this problem is addressed and 2 method for com-
puting a certain class of photonic devices is presented as
implemented in the program NM Seses (SEmiconductor
Sensor and actuator Simulation).

The electrical behavior of a semiconductor device
may be well characterized by computing the electrical
fields with the classical drift-diffusion model from the
electric potential, electron and hole densities. More
complex is the approximation and computation of the
optical fields since they strongly depend on the class
of problem to be modeled. Here, a standard solution
is not available and for different classes of devices, dif-
ferent numerical algorithms must be implemented. In
the present work, the optical fields are computed as the
quasi-TE or quasi-TM modes of two-dimensional dielec-
tric waveguides. These modes are obtained by solving
the scalar Helmholtz problems for one of the transversal
components of the electric or the magnetic field. Once
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the governing equations for the electrical and the optical
fields are specified, it is possible to define the coupling
between these fields quite generally with the introduc-
tion of recombination models, as for example when stim-
ulated recombination or absorption of light is present.
This step may be considered quite simple, but the spec-
ification of the model’s parameters generally requires

- complex experimental investigations.

In the present article numerical results for a semi-
conductor laser device being investigated for use in all-
optical communication systems are reported. The de-
vice consists of a planar dielectric rib waveguide and
a hetero p-i-n laser diode as depicted in Fig. 1. For
clarity, the figure only shows a small section of the real
device which is actually much longer and is only a sin-
gle component on a chip developed for switching optical
signals. Because the lateral dimensions of the lzser de-
vice are small compared with the longitudinal length,
the laser device can be well characterized by studying a
single two-dimensional section.

GOVERNING EQUATIONS FOR
ELECTRICAL FIELDS

We use here the classical unstationary drift-diffusion
model {9],]13] as the governing equations for the electric
potential ¥ and the electron n and hole p densities. The
model consists of the partial differential equations
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with € the dielectric permittivity, C the bulk charge,
Vr = 0.025V the thermal voltage, R(n,p) the recombi-
nation rate and Dy, the diffusion coefficients.

Because most semiconductor optical devices are made
of heterogeneous materials, the modeling process starts
with a correct characterization of the bandshapes at
thermodynamic equilibrium when the currents j;,,p are



Figure 1: A semiconductor laser device forming a rib-waveguide and composed of three layers: (top) p-doped InP,
(middle) intrinsic InGaAsP, (bottom) n-doped InP. Electrical contacts are deposited on the top and bottom of the
device. For the steady state solutions presented in the following, the laser diode is forward biased by 1.4 V.

null. This is achieved by defining the intrinsic density
n; to be a space dependent entity. However, if only dif
ferent values for the intrinsic densities are defined the
bandgap’s center will be all aligned at the same energy
level. Since this is not the general situation for semicon-
ductor hetero structures, we allow the specification of a
shift 6E; for the bandgap’s center or equivalently of the
intrinsic Fermi level E;. The intrinsic densities nin, nip
in the model (1) are then
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Nin = 18 5VE | g = ngeSB/Vr (2)

Here, large gradients for the potential v and carrier
depsities n = nie?/"T and p = nype~¥/VT are to be
expected at the interfaces between different materials,
see [1], [3]. Our implementation of the drift-diffusion
model allows the parameter n;, E; in {2) to be speci-
fied as piecewise constant functions since carrier densi-
ties are generally discontinuous functions at the inter-
faces between different materials. The computation of
such discontinuous fields should be avoided. The im-
plemented finite element method only computes con-
tinitous solutions and a very large number of elements
would be necessary to approximate discontinuities. To
circumvent this problem, the discretization of the drift-
diffusion model is therefore performed with respect to
the continuous variables (¥, n/nin,p/nip). For the nu-
merical results of this model, Fig. 2-3 show the potential
field and electron density as computed for the device of
Fig. 1.

Alhough for heterogeneous materials and non-de-
generated semiconductors the Poisson equation yields
a correct representation of the bandshapes, the cur-
rent coniinuify equations based on the linearization of
the Boltzmann transport equation may not yield cor-
rect current-voltage characteristics. At the interface
between two semiconductors with different bandgaps,
strong carrier-carrier interactions are present and only
Monte Carlo methods are generally able to properly

Figure 2: The potential field distribution for one-half of
the laser device of Fig. 1.
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Figure 3: The electron density for one-half of the laser
device of Fig. 1.
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modei the physics. This limitation is probably not the
major source of error for modeling the presented laser
device. Typically, recombination parameters play a very
important role in the approximation process, as for ex-
ample when determining the lasing condition.

GOVERNING EQUATIONS FOR
OPTICAL FIELDS

In the present work, the optical fields are computed
as quasi-TE or quasi-TM modes of optical two-dimen-
sional dielectric waveguides propagating along the z-
axis. These modes are obtained by solving the scalar
Helmholtz problems for the y-component of the electric
and magnetic optical field E, and H,, using
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for TM modes, where n is the refractive index, A the
wavelength, w = 2w¢/A, and § the eigenvalue repre-
senting the mode propagation velocity. For a piecewise
constant refractive index with the invariance property
dyn = 0, the solutions of (3) and (4) yield exact TE
and TM solutions of the Maxwell equations, see {15]. In
practice, these exact solutions do not exist since the op-
tical mode must be limited laterally in some way. How-
ever, if the refractive index variations along the y-axis
are small compared to the ones along the z-axis, then
the optical modes will preserve the TE and TM char-
acter and the solutions of the scalar equations (3), (4)
with a y depending refractive index will result in ap-
proximate solutions of the Maxwell equations. These
solutions are called quasi-TE and quasi-TM modes. For
the laser device of Fig. 1, Fig. 4 displays the ground
quasi-TE optical mode. The reason why the waveguide
medes are computed as quasi-TE or quasi-TM modes re-
lies on the simplicity of the scalar formulation. Solving
the Maxwell equations with zero source terms is more
complex because of the intrinsic vector character. Here,
spurious modes may appear if inadequate discretization
methods are used.

COUPLING BETWEEN OPTICAL
AND ELECTRIAL FIELDS

Different classes of devices have in general quite dif-
ferent couplings between optical and electrical fields,
however, for many devices this coupling can be given
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Figure 4: The ground quasi-TE mode of the dielectric
waveguide defined by the laser device of Fig. 1. Only
one half of the device is shown.

by defining special models for the recombination. In
particular, for the laser example in Fig. 1, the coupling
is determined by stimulated emission of light given by
the relation

R¥™ = gain x photon fluz (5)
= gain X energy fluz/fw,

where ¢ = g(n,p) is the material gain. Different gain
models are available, which are in general given as poly-
nomials in the variables n and p with coefficients fitted
from experimental data. For example, in this implemen-
tation the models

qgi(n,py = Aoz + Ay2?, :
g2(n,p} = ¢(n,p) — (Co+ Crz+ (6)
0222) (A - (LD = Byz — Blzg))2 s

are used with z = . /np ~ Np.

The energy flux is evaluated using the relation
energy flur = const ®? where ¢ is the computed and
normed optical amplitude proportional to E, or H, and
const is a user defined value expressing the power of the
optical beam. This stimulated recombination is then
added to other recombination models like Schottky-Read-
Hall, spontaneous, and Auger recombination models.
The total recombination rate for the laser device in Fig.1
forward biased by 1.4 V and for an optical beam of
10 mW is given in Fig. 5. As for the carrier densities,
the recombination rate is also a discontinuous function
at the interface between different materials.

NUMERICAL ALGORITHMS

Once the governing equations for the optical and
electrical fields are defined and the type of coupling has
been specified, numerical methods are applied to solve
all of the equations consistently.
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Figure 5: The recombination rate for one-half of the
laser device of Fig. 1.

In a first step, one has to consider the type and mag-
nitude of the coupling between the physical fields. For
the example in Fig 1, the dynamical behavior when a
beam of light traverses the laser device is of primary
interest. Since the lateral dimensions of the device are
small compared with the longitudinal length, we may
perform all numerical computations on a two-dimensional
section. Therefore to model this device we proceed as
follows.

The user specifies the power of the optical beam en-
tering the device. The scalar Helmholtz equations for
TE or TM-modes are then solved to obtain the mode
amplitude. The next step is to solve the drift-diffusion
model to obtain the electrical fields and o use the mode
amplitude to determine the amount of stimulated re-
cornbination.

Since the optical modes are computed for a device
at rest, i.e. without an optical beam, this sohution is
not really consistent. Stimulated re¢ombination affects
the density of the carriers which in turn affects the re-
fractive index of the dielectric waveguide and thus the
" optical modes. It is possible to obtain a consistent solu-
tion with a Pickard iteration method, thus by restarting
the whole solution process with the last computed field
values. Since this type of coupling is weak, the conver-
gence is assured in a few iterations and in most cases
no iterations at all are required. This is even more true
for hetero junction devices where the refractive index
differences between film and cladding layers are large.

From the solutions of the drift-diffusion model the
amount of stimulated recombination and carrier densi-
ties are obtained. These values are first used to compirte
locally and then globally an averaged gain factor for the
mode amplitude. We can now make a small step along
the longitudinal z-direction and with the computed av-
eraged gain factor we are able to determine the optical
power. With the optical field now given at this new sec-
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tion, the whole computation can be repeated. If this
process is repeated for a.certain number of sections, at
the end we get the beam amplitude at the output of the
device.

With a weak coupling mechanism from the electri-
cal towards the optical fields as discussed above, the
modeling of this laser device may be characterized as
one directional. First one can compute the optical fields
and then the electrical fields. This is true for the pre-
sented example, but if one uses the laser diode as a self-
sustained laser then the coupling becomes bidirectional.
Computing solutions for this case is typically more diffi-
cult and instabilities related to the existence of multiple
solutions may occur for example, when different optical
modes are competing. Here we will not further discuss
this type of solutions.

Next the numerical algorithms used to solve the gov-
erning equations are briefly presented. The scalar Helm-
holtz equations are discretized with standard rectangu-
lar ), finite elements [4]. To find eigenpairs (A,Z)} of
the generalized eigenproblem AT = AMT for the posi-
tive definite matrices A and M, the Lanczos algorithm
is used to compute a subspace consisting of orthogo-
nal vectors and a QR-algorithm with shift diagonalizes
the tridiagonal matrix obtained by the Lanczos algo-
rithm as the projection of the original problem onto the
subspace [6]. A partial reorthogonalization algorithm is
used to keep the Lanczos vectors almost orthogonal to
each other {14].

The three equations of the drift-diffusion models are
one of type elliptic and two of type parabolic. Following
the method of lines we first discretize the space variables
and deal with time as a continuous variable. Each sin-
gle equation of the drift-diffusion model is discretized
in space by mixed finite element methods and @, el-
ements {10}, [11}. For a successful implementation of
this method, it is mandatory to have an exact and fast
numerical evaluation of exponentially fitted integrals.
These integrals arise when discretizing the electron and
hole current continuity equations, see also [12] for fur-
ther details on the numerical algorithms.

After the discretization of the spatial variables, a sys-
tem of ordinary differential equations for the time vari-
able is obtained. Because the system can be very stiff,
general A-stable methods as the standard second order
trapezoidal integration algorithm are not well suited and
may lead to unwanted oscillations. Better suited are the
50 called L-stable methods, like the BDF2 method which
has been used together with an adaptive time step se-
lection algorithm {7],{8]. A composite trapezoidal-BDF2
method is also a possible choice and offers some advan-
tages, see [2].

All linear systems arising during the solution process
have been solved by LU-factorization and the minimum
degree algorithm has been used to minimize the amount



of fill-in during the factorization process {3]. -

As shown in Figs. 2-5 for steady state solutions of
the laser device of Fig. 1, as well as for the unstation-
ary solutions computed, the numerical solutions do not
show spurious oscillations and this despite the fact the
carrier densities are discontinuous and large gradients
are presented in the potential field at the interface be-
tween different materials. This good numerical behavior
is also reflected by a good convergence behavior of the
non-linear Newton-Raphson solution algorithm used to

solve the discretized and linearized drift-diffusion model.

COMPUTATIONAL EXAMPLE

The aim of the presented example is to compute the
dynamical behavior of a laser diode upon the arrival of
an optical signal, see Fig. 6. A large optical control sig-
nal is used to change the refractive index of the dielectric
waveguide. Here the reduction of carriers inside the ac-
tive region caused by stimulated recombination induces
a change of the refractive index through the plasma e
fect. If in addition to the control signal a small data sig~
nal is added, this latter signal will not affect the state
of the device to a first order and the signal will see a
change in the refractive index as caused by the control
signal. The change of the refractive index will affect
the propagation velocity of the data signal inside the
waveguide, an effect used for optical switching. Impor-
tant for this device is a fast recovery when the optical
control signal is switched off. Here, the carriers must be
swiftly injected to quickly restore the original state and
the refractive index of the waveguide.

To study this problem, we have carried out time de-
pendent simulations, where we have only computed so-
lutions at the input facet of the laser device. ‘

In one of the examples, short Gaussian shaped op-
tical signals of 6 ps FWHM are injected into the input
facet of the laser, see Fig. 7. The response of the laser
given by the averaged gain '

()

is shown in Fig. 8. This averaged gain is directly corre-
lated with the change of the propagation velocity of the
data signal. The mobile carrier concentration is quickly
reduced because stimulated emission is taking place im-
mediately after arrival of the signal, however, the re-
covery is a much slower process because of the limited
carrier mobility,

CONCLUSIONS

Through an example of a semiconductor laser diode,
numerical methods for modeling photonic devices have
been presented. If the drift-diffusion model may be
considered a general tool for computing the electrical
fields, the governing equations for the optical fields and

< Gain >= fg(n,p)@zdzdy
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the numerical methods used for their solutions must be
chosen according to the class of optical devices being
considered. The coupling between optical and electrical
fields is in general given by the definition of recombina-
tion models although the specification of model param-
eters is in general not yet available. Numerical solutions
without spurious oscillations are obtained with the pro-
posed numerical algorithms implemented with the pro-
gram NM Seses .
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Control signal

Figure 6: A semiconductor laser device with a control and a data signal. The large control signal is used to induce 2
change of the effective refractive index for the data signal.
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Figure 7: Gaussian shaped optical signals with 6 ps FWHM going through the semiconductor laser.
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Figure 8: The lases zain response to the optical signal in Fig. 7.

630



