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ABSTRACT

We present a finite elemen: formulation based on a
h — p refinement strategy for the coupled dopant-defact
diffusion problem in semiconductor process modeling.
The algorithm involves increasing the degree p of the
element basis as well as mesh refinement (k) and redis-
tribution as an optimal way of Zenerating more accurate
approximare solutions to the diffusion problem. A hi-
erarchic famiiv of nested basis functions based on inte-
grated Legendre polvnomials is emploved in the present
study. The lower-degree monomial functions are explic-
itly embedded in successively higher order bases and
therefore, the element matrices and vectors need not De
recomputed corresponding to the lower-order bases for
each p-refinement. More specifically, an element matrix
corresponding 10 a degree p = k is a nested sub-matrix
of the new element matrix corresponding top = & = 1.
An important characteristic of the hierarchic monomi-
als is that the coefficients corresponding to the mid-side
and interior element nodes are tangential derivatives of
the solution field and not necessarily the function val-
ues. Numerical examples demonstrate the optimal con-
vergence rate and accuracy of the present formuiation.

Keywords: TED, h~p finite element, numerical mod-
eling

INTRODUCTION

The most crucial part of semiconductor process mod-
eling is tracking the movement of dopants introduced
into the crystal. The dopant distribution gOVErns ev-
€ry aspect of device behavior. Diffusion of dopants in
silicon is mediated by the point defects of the silicon
lattice, interstitials and vacan-ies. The faster dopants
diffuse almost exclusively via an interstitial mechanism.
As many procsssing steps in the fabrication of 2 device
locally perturb the concentration of interstitials in the
lattice, modeling defect-assisted diffusion is of great im-
portance in modern technology.

The basic equations of defect-mediated diffusior. are

1]

= = vV.F, (1)

aI
- = V. + V. F;
% Fp {2)
Fo = D, ((LyvE+Beil) (3)
b - b \I,./ ' \I,‘//
F I A
Fi = Di I~ ka—*; (4)

where B is the concentration of dopants, T is the
conceniration of free intersiitials, 7= is the thermal equi-
ibrium background of interszitials and Fi. F; are the
local fluxes of defects and interstitials. and Dy is the
equilibrium diffusivity of the dopant.

Increases in the interstitial concentration above the
background result in two effects; first there is an over-
all enhancement in the diffusivity of dopants due to the
excess interstitials. Secondly, there is an “uphill’ diffu-
sion term which causes dopants to piie up due to gra-
dients of point defects. Such gradients arise near sur-
faces, where interstitials recombine readily. keeping the
surface concentration of defects near eguilibrium at all
times. Both effects have negative impacts on transistor
behavior. The enhanced diffusion washes out carefully
tailored dopant profiles and can ceuse closely separated
features to merge. The uphill diffusion can cause 'm-
desired piles of dopant to form near surfaces, re.sing
threshold voltage and reducing carrier mobility 21

Whern interstitials are generatec by ion implantation,
the excess above equilibriure is so large that the inter-
stitials coalesce into clusters and maintain a steady en-
hancement of free interstitials over the background. The
relation of free interstitials to total interstitials can be
approximated by [3]
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where the enhancement s can be several thousand,
and I*%* is the total local concentrarion of interstitials,

Note that appropriate boundary and initial condi-
tions must be imposed for a well-posed problem {(1)-
{4}). For example, the equations describing diffusion of
interstitials can be closed as follows:
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The equations for dopant diffusion can also be closed
in a similar manner.

GALERKIN FORMULATION

Let V" denote the discrete space of weighting func-
tions satisfying the zero boundary conditions on B and
I; and & = &P the discrete space of trial solutions
which vary as a function of time. The semi-discrete
Galerkin formulation corresponding to the weak form of
the interstitial equations can be written as

Given g, k and Io. find I*(t) = vP + g", I™{t) € Sk,
t € {0,777 such that for all w® € V?

(w", %) + a(w®,v?®) = (w®, B)r— (w®, 5%) {8)
(wh,v*(x,0)) = (wé,fo)—(wﬁgh(o)) (9

The trialsolutions ¢* and g* can be written as
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where the nodes n, belong to the boundary segment 7.

The corresponding Galerkin weak formuiation for the
boron equations can be derived in a similar manner. The
basis functions A can be constructed using the family
of hierarchic polynomials as follows.

Hierarchic basis functions

In the following, we briefly review the hierarchic poly-
nomial shape functions for p-finite element methods and
refer to [4] for details.

The basis functions for any element can be organized
into vertex, edge and interior functions. These are gen-
erated by tensor products of one-parameter family of
either Lagrange or Legendre polynomials. Such 1D hi-
erarchic polynomials in parameter £ € [—1,1] can be
defined as (see Figure 1 )
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Figure 2: 2D hierarchic basis functions
The functions ¢; are polynomials of degree i and can
be written for Lagrange polynomials as
$:(€) = (&~s) iz2 (13)

where s = 1 for i even and s = £ for i being odd. Simi-
larly, for Legendre polynomials

1

#i(€) = —5(-5;'_—1)

(Pi{E) ~ Pi—a(£)) (14)

where the polynomials P;(£) are given by the recursive

(n+DPrii(€) = (2n + 1)§Pr(€) = nPp-1(€) (15)
Generalizing to 2D quadrilaterals, we can identify

the basis functions as follows (see Figure 2)
Vertex Basis Functions

MiEm) = 0-91-n)

Nalgm) = 0490 -n)
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Edge Basis Functions
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HOG+n), i=23p  (18)

Interior Basis Functions
NQ(E: 7]) = ¢l(é)¢3(n)a ?'sJ =2, 3""? (20)

In the above, the lower-degree monomial functions
are explicitly embedded in successively higher order bases
and therefore. the element matrices and vectors need not
be recomputed corresponding to the lower-order bases
for each level of p-refinement. More specifically, an ele-
ment matrix corresponding to a degree p = k is a nested
sub-matrix of the new element marrix corresponding to

p =k + 1. An important characteristic of these hierar-

chic monomials is that the coefficients corresponding to
the mid-side and interior element nodes are tangential
derivatives of the solution field and not necessarily the
function values.

In our adaptive p methodology, the polynomial de-
gree may differ on adjacent elements. The polynomial
degree p across an element edge is taken to be the smaller
p-value of the two adjoining elements sharing that edge.
C? continuity of field variables across element edges fol-
lows easily since the degree can be constrained by simply
setting the corresponding higher-order derivatives as de-
grees of freedom on an edge to zero. However, this need
not be done explicitly. For most finite element formula-
tions, this step can be incorporated by assembling only
those edge hierarchic basis functions that correspond to
polynomial orders less than or equal to p. This results in
a smaller linear system of equations to be solved later.

NUMERICAL STUDIES

The main numerical problems in transient enhanced
diffusion are that dopant concentrations are significant
over a range of four to five decades, the diffusivities of
point defects are at least a million times faster than that
of the dopants, making the problem stiff; and that drift
terms may significantly exceed diffusion terms, often de-
manding upwinding. A typical problem in this category
is modeling the pile up of dopant a1 the surface induced
by the damage distributed at some depth in the crystal.

As a first example, we consider an initially flat boron
profile and study the resulting ‘pile-up’ of boron at the
surface due to transient enhanced diffusion. The follow-
ing initial profiles are imposed:
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Figure 3: Boron profile at t+ = 1000s
B(z,0) = 10*7 em™2 (21)
_(=—0.5y2

I(z,0) = 5 x 103 + 10%0¢™ Zx0.07 g3 (22)

The diffusivities of boron and interstitials are 4 x
10717¢2% 5nd 10~ respectively. Figures 3 and 6
show the concentration profiles of boron and defects at
t = 1000 seconds. The boron concentration at the sur-
face must be computed accurately since it affects the
device characteristics. The steep gradients near the sur-
face are usually resolved by using a fine mesh and subse-
quent mesh refinements. The present approach requires
a ‘reasonable’ initial mesh that does not necessarily re-
solve the strong boundary layers. The solution is im-
proved by increasing the polynomial degree of the ele-
ment basis until a converged solution is obtained. Since,
an increase in the polynomiai degree of an element basis
introduces additional unknowns, this step is carried out
only in those elements that are close to the surface (the
‘pile-up’ region). :

Figure 4 compares boron concentration vaiues close
to the surface (z = 0) for different p-refinement lev-
els. A relatively coarse mesh was used for the present
study. It is clear that using low order finite elements
on this coarse mesh introduces appreciable error in the
‘pile-up’ value of boron at the surface. However, the
correct solution is reached by increasing the element de-
gree to 4 and higher. We compare this approach with
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Figure 41 Convergence with increasing polynomial de-
gree

a conventional h-refinement scheme in Figure 5. Only
the elements near the surface are refined successively
until convergence. It should be noted that the present
p-refinement scheme yvields a faster convergence to the
surface value of Boron, resuiting in a smaller algebraic
system to be solved for the discrete problem.

A different set of implanted profiles for boron and
point defects are studied next:
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We show the surface values of boron concentration
for different polynomial refinement levels in Figure 7 and
compare them with the solution from ‘Prophet’ simula-
tor for accuracy. As shown earlier, there is significant
error in the model for low degree elements. However, the
correct profile is obtained by successively increasing the
polynomial order of the elements. Note that the mesh
used for the present p-refinement study is coarser than
the final mesh in ‘Prophet’ and therefore, results in a
smaller number of unknowns. Figures 8 and 9 present
the profiles of boron and point defects at various times
of the diffusion process and compare the results with
those using ‘Prophet’.
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Figure 5: Comparison of h and prefinement schemes
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Figure 6: Concentration of defects at t = 1000s
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Figure 7: Surface values of Boron at t = 1000s for dif-
ferent p-refinement levels
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Figure 8: Concentration of point defects at t = 1000s
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Figure 9: Concentration of Boron at ¢ = 1000s

CONCLUSION

We have presented an adaptive higher-order finite el-
ement formuiation for modeling transient enhanced dif-
fusion in semiconductor process modeling. We advise a
combiration of mesh refinement and polynomial enrich-
ment of the element basis functions for problems with
steep gradients and strong singularities to effectively
contain the pollution error. Nevertheless. in the pre-
asymptotic range, selective p-refinement is often very
effective. This should not be ignored since in many engi-
neering applications, accuracy requirements do not war-
rant computations in the asymptotic range. The numer-
ical examples presented above confirm the higher rate of
convergence with the p-refinement method as compared
to linear finite element schemes commonly used in pro-
cess simulation codes.
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