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ABSTRACT

A finite element method is developed to compute the

mechanical strain resuhing from boron doping in silicon.’
This technique is then applied to the bending of boron- -

doped silicon cantilevers. The silicon cantilever is modeled
as an isotropic elastic material. A lattice mismatch parame-
ter due to the substitutional boron is used as the strain
source. Qualitative agreement is resulted with experiments
in the literature for varying thickness cantilevers.
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INTRODUCTION

Silicon bulk micromachining is important for fabricat-
ing silicon-based sensors and transducers. Silicon sensors
are often composed of thin membranes, bridges, cantilevers,
and beams. These structures can be fabricated by various
buik micromachining methods. Anisotropic wet chemical
etching is often used to develop sensor structures due to its
simplicity and convenience as well as providing very accu-
rate dimensional contro [1].

~ Boron etch stops are often used as a method for con-
trolling etch depth in silicon substrates. Thin silicon film
_ structures can be fabricated by thermally diffusing or
implanting boron on one surface of the silicon wafer and
then by etching through 2 mask window on the other side of
the wafer. For wet chemical etchants sach as KOH, the etch
rate decreases significantly as the etch front approaches

boron concentrations greater than 7x10% cm>, It is believed
that the strong B-Si bond tends to bind the crystal more
stringently, therefore requiring more energy to release the
silicon atom [2].

1t is then possible to design thin silicon film structures
with the desired thickness by conirolling the diffusion of the
boron dopant profile so that the etch stop will occur at depth

where the boron concentration approaches ~7x10!% em3.
However due to these levels of boron concentration, high
levels of residual stress are generated. Since micromachined
thin membranes are critical componrents of silicon sensors
and transducers, residual stresses in these structures may
lead to mechanical failure of the device and/or deteriorate its

performance.

It is well known that boron is a substitutional dopant in
silicon and exerts a tensile strain when introduced into the
crystal lattice [3). As the smaller boron atom displaces the
silicon atom, there is a tendency for the lattice to contract
locally. However, the silicon lattice will restrain from con-

- tracting and therefore resuit in a local tensile strain, as is

94

demonstrated in Figure 1.

Figure 1. A local tensile strain is generated as a boron
atom substitutes into a silicon lattice site,

The high concentrations of boron necessary to produce
the etch stop behavior results in residual tensile stress with

magnitudes approaching and exceeding levels of 1x10° dyn/

cm?. To relieve these high levels of stress the silicon crystal
yields and may generate dislocations that may be deleterious
to device and sensor performance [4]. This is one of the
main reasons for studying residual stress and its origins.

The residual stress resulting is dependent on the gradi-
ent and maximum magnitude of the boron dopant profile as
well as the thickness of the cantilever resulting after the
backside etch. Since the boron dopant profile is not uniform
the stress distribution varies with depth causing the cantile-
ver to bend in order to relieve the resulting residual stress.
This is evident in previous studies analyzing positive and
negative bending of boron-doped cantilevers under varying
diffusion conditions [5, 6.

This paper presents a finite element based model] that
computes the residual stress field resulting from a particular
boron diffusion process and its corresponding cantilever
bending behavior.



FEM FORMULATION

The process simulator FLOOPS [7] has been imple-
mented to study and analyze the residual stress due to the
boron dopant. A finite element method has been developed
to compute the stress resuited from the boron layer along
with other sources of stress in microelectronics technology
[8]. This framework has then been adapted here 1o model the
residual stress in micromachined structures.

Equivalent Nodal Forces

From the theory of equivalent nodal forces and virtual

work [9], the equivalent elemental force g° can be described
by the following relation:

¢ = [B odvony- 5§ n

Vl

where B” is the transpose of the vector relating the strain to
nodai displacements, f,, represents element’s distributed

‘body forces, and 6 is the stress tensor. Since Equation 1 is
derived for any virtual displacement, it can be used in con-
Jjunction with any stress-strain relationship.

For a linear elastic solid such as silicon, the following
relationship between stress and strain is known as Hooke'’s
law:

6 = D(e—gy) + 6, 2)

where D is the tensor of elastic constants and £g and G, are

the initial strain and stress tensors respectively [10]. Substi-
tuting Hooke’s law for the stress tensor, Equation 1 now
becomes the following:
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The B mairix relates the strain ténsor € to the nodal displace-

ments 2%
e = Ba®. @

Solving for the nodal displacements in Equation 3

under mechanical equilibrium (g° = 0) in the case of no ini-
tal strain or stress, yields the following simplified elastic
relationship integrated over the volume of the element;

[ 8" DBa‘d(vory = 1} 5)
V‘

or in discretized form:

8'DBAS = [ _ (6)

where A is the volume of the element.

The isotropic approximation is used to simplify the ten-
sor of elastic constants D. Therefore the silicon cantilever is
modeled as an isotropic elastic material. The two-dimen-
sional plane strain approximation is implemented to further
simplify the computation. This assumption is valid for struc-
tures with infinite width in the z-direction where & =8y =
£xx = 0. A rigid boundary condition (a, = ay = a, = 0} is
imposed on the interface where the cantilever is attached to
the substrate. Linear shape functions are utilized for interpo-
lation of the strain solution within each element. Triangular
elements are used for the 2D FEM implementation and tetra-
hedral elements constitute the 3D structures

Boron Strain-induced Body Forces

The force due to the boron dopant is modeled as a dis-
tributed body force and is assigned 1o the right hand side of
Equation 6 for each element. The force is calculated through
an average element strain mismatch parameter ¢, simiiarly
as if it were an initial strain:

fo=] B Deld(vol). M
Vt

After integrating over the volume of the element, the follow-
ing discretized form results:

fi= BTDeCA . ()

The average element strain parameter g5, is modeled by
the following relationship:

&
¢ _ _B “Boron
% = g2 e (100) ©)

Through densitometric studies, & Hom reported that the
boron induced lattice contraction is linearly proportional to
the atomic percentage of boron in silicon [3]. Extracting
from Horn’s measurements, it is found that the silicon crys- -
tal lattice contracts at 0.014 A per atomic % boron. This con-
stant is used as the lamtice contraction parameter &g in
Equation 9. Since the boron concentration is a nodal quan-
tity, the average element boron concentration is compuied
from its nodes’ concentrations. This average concentration is

divided by the atomic density of silicon (Cg; = 5x10%%cm™)
for estimation of the local elemental atomic percentage of

boron. The lattice displacement is then the product of atomic
percentage and . The local boron-induced strain is then
computed by dividing this lattice displacement result by the
equilibrium lattice constant of silicon (Ag; = 5.4295 A).

ANALYSIS

The method previously described is now applied for
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studying the strain-induced bending of boron-doped cantile-
vers. The cantilever bending behavior is then studied after
regridding the deformation of the structure according to the
displacement solution,

As was noted previousty, the bending of the cantilever
is dependent on the boron concentration, its concentration
gradient, its position with respect to the center of the cantile-
ver, and the cantiiever thickness. A uniform profile of boron
dopani (Figure 2a) does not cause bending due to the entire
thickness of the cantilever being subjected to an equal
amount of tensile boron-induced stress. No bending also
occurs if the boron profile is symmetrical about the center
axis of the cantilever (Figure 2b).

' Cantilevers with dopant profiles more heavily doped on
one side of the center and having a sharp gradient will
induce deflection in the direction away from the more highly
doped side (Figure 3). Cantilevers that are products of the
boron etch stop process usually have the characteristics of
the more heavily doped side towards the substrate as in Fig-
ure 3a. This is due to the high boron concentration required
for the etch stop on the backside. Thinner cantilevers pro-
duce greater deflections than ones with thicker dimensions
having the same dopant profile due to less moment of inertia.

APPLICATION

Simulations are performed ﬁsing the finite element
models previously described for the cantilever process
described in Figure 4. First boron is introduced by thermal
diffusion. The resulting profile has a peak concentration of
8x10!° em3 (Figure 5). A backside wet chemical etch is
then performed. A boron concentration of 6x107° cm™ is
chosen as the stop for this etch. The resulting cantilever
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Figure 2. A uniform boron profile (a) or a boron profile that
is symmetric about the cantilever center (b) does not induce
cantilever bending.
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Figure 3. The tensile strain induced by the boron dopant
causes the cantilever to curl away from the more region
highly doped region.

 thickness is about 1.4 pm.
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Next a series of 2d plane strain and 3d elastic deforma-
tion simulations is performed for the resulting boron-doped
cantilever structures, The 2d cantilever has 2 length of 50
1m. The grid spacing in the x-direction is 0.05 pm and in the
y-direction is 0.5 pm. Since the x-direction spacing is lim-
ited by the necessary resolution to represent the boron pro-
file, it becomes a challenge to preserve element quality as
the cantilever length is increased while maintaining the num-
ber of elements constant. The element aspect ratio problem
is magnified further in three dimensions. The 3d cantilever
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Figure 4. Process flow for fabrication of the cantilever.
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Figure 5. Resulting cantilever boron profile with a thick-
ness of 1.4 pm.

has dimensions of I um width and 10 um length. The 3d
cantilever grid spacing is 0.3 um in the z-direction (widih),
0.5 um in the y-direction (iength), and 0.1 pum in the x-direc-
tion (thickness). N

The following mechanical material properties were uti-
lized for ail:simulations performed: Young’s modulus Ep.si

= 1.22x10%2 dyn/cm?) [111, Poisson’s ratio (v=03).

A series of varying front side etch simulations were
performed to analyze how the shift in boron profile and
decrease in thickness of the cantilever affected the deflection
solution. These series of etch simulations modei the experi-
ment performed by Yang [6].
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~ Figure 6. Deflection curves for different thickness cantile-
vers simulated by 2d plane strain elastic FEM.

RESULTS

The results of the 2d plane strain simulations are dis-
played in Figure 6. An example of the defiection simulation
for the 0.62 pm thickness beam is shown in Figure 7. The
structure is regridded after the nodal displacements are
solved for. Figure 6 displays the nodal displacements afong
the top surface of each cantilever structure simulated. The
differences between each structure thickness relates to the
amount etched off the top surface. Notice that 21l the cantile-
ver beams except the thickest deflected in the negative x-
direction (upward in Figure 7). Generally as the cantilevers
were etched thinner, the amount of deflection increased.

A 3d simulation for the 1.37 um thickness cantilever ic
demonstrated in Figure 8. It is more difficult to examine the
defiection visually in the 3d simulations due to the shorter
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Figure 7. Two-dimensional plane strain simulation of the deflection of 2 0.6 pm thickness cantilever.
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Figure 8. Three-dimensional simulation of the defiection of 2 1.37 pm thickness cantilever. The maximum defiection resulted is
observed to be at the bottom corner tip of the cantilever beam.

length of the cantilevers. The deflection solution plot for the
3d simulations is displayed in Figure 9. The same general
trend also results. _

The simulation lengths of the cantilever beams are
much shorter than the those fabricated in various experi-
ments [5,6]. Typically cantilever beams are fabricated with
lengths up to Imm in order to have an accurate measurement
of the deflection. The element quality problem Tlimits the
length of the cantilevers simulated before a significant error
is resulted in the elastic solution.

To compare the simulations performed with experi-
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Figure 9. Defiection curves for different thickness cantile-
vers simulated by 2d elastic FEM,

ments in the literature, a parabolic curve fit was used to
extrapolate the expected deflections for longer cantilever
beams. This is possible because beams processed the same
with varying lengths would all have the same bending
moment [5]. This is illustrated in Figure 10.

Therefore, the cantilever deflection simulation results
are then extrapolated to amounts corresponding to 1250 um
to compare with experiments performed by Yang [6]. These
results are presented in the histogram shown .in Figure 11.
Several points can be deduced from the results obtained.
First is the 2d and 3d simulations resulted in roughly the
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Figure 10. Longer cantilever defiection solutions are extrap-
olated by parabolic curve fits.
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Figure 11. Results of both sets of simulations compared
with Yang experiment [6].

same amount of deflection. This confirms that the plane
strain approximation does not affect the result of the simula-
tion and that cantilever width is not a factor in the stress
solution. Second, both the simulations agree with the pub-
itshed experiment in the direction of the deflection for each
beam thickness. However the measured defiection results are
consistently about two to three times the magnitude of the
simulations., Also the measured quantities have a relative
maximum negative deflection for the 0.92 um thick beams,
while the simulations showed relatively constant deflections
for cantilevers of less thickness.

CONCLUSION

The observation that the simulations agreed qualita-
tively with the measured experiment is encouraging. There
were differences in the relative maximums as well as the
magnitude of deflection. It is believed that the relative nega-
tive maximum difference is attributed to differences in the
simulated boron profile, either in concentration magnitude
and/or in a shift in depth.

The difference in deflection magnitudes is attributed to
the lattice contraction parameter used for the boron-induced
strain model. By simply scaling this parameter, the simula-
tion deflection magnitudes would coincide better with the
measurements. This leads to believe that the lattice contrac-
tion parameter used for the boron induced strain model may
need to be scaled for the case of thin film thickness. It may
be that the boron-induced lattice contraction X-ray diffrac-
tion measurements may be different for diffused boron with

a shallower depth as opposed to the bulk p*-silicon wafer

measurements that were performed [3]. The thickness of the
deformed layer may need to be taken into account in scaling
the lattice contraction. The FEM cantilever deflection solu..
tion may then give insight to the magnitudes of residual
stress inherent in the cantilevers that is induced by boron
dopant,
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