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ABSTRACT

lation of MEMS are strongly related to the technology
used 1o fabricate them. CMOS MEMS are naturally
combined with cireuitry, and in a packaged form they are ca-

The most appropriate tools for the modelling and simu-

pable microsystems. The numerical models of the microsys-

tems therefore have 10 include the domains and effects of the

IICTOSENsors, microactuators, the CMOS circuitry and the

packaging. To enable the use of such comprehensive models,
we employ compact modelling technigues. The methods are
removing the sharp distinction between “lumped” and “con-
tinuous” numerical models. This review illustrates recent
work we have done in this area.

Keywords: CMOS, MEMS, Compact Model, Model Reduc-
ton, SFICE, Finite Element Method, Boundary Element
Method.

INTRODUCTION

CMOS MEMS combine MEMS microdevices and CMOS
circuitry into microsystems [1}. CMOS MEMS are fabricat-
ed using Industial CMOS foundry services. Industrial
CMOS combined with process-compatible post-processing,
such as anisotropic dry and wet etching of silicon, the remov-
al of sacrificial dielectric or metal layers and selective depo-
sition or plating and subseguent patterning of non-standard
layers on the wafer surface, yields a wealth of possibilities
for creating functioning MEMS.

This approach rewards the microsystem designer. CMOS
fabrication facilities that provide ASIC services are less ex-
pensive than establishing a dedicated MEMS foundry. In ad-
dition, the full wealth of CMOS analogue and digital
circuitry is available for interfacing with the microdevice.

The approach also has its challenges. CMOS foundry de-
sign rules must be adapted to the requirements of sensor and
actueator devices. The signal-coupling material properties are
typically not measured or monitored by the fab, and special
techniques have to be developed to ensure reliable and func-
tioning devices [2]. CMOS is optimized for electrical circuit-
ry, thus CMOS MEMS designers have to cope with reduced
possibilities when compared to dedicated MEMS processes.

Our design goal is always an optimized microsystem, thus

comprehensive system-based modelling is required to save
developrnent resources. Many system level simulation lan-
guages and tools exist. Since CMOS MEMS are designed us-

~ ing mask layout tools, and the underlying electronic circuit

design libraries are usually in SPICE netlist form, it is pru-
dent to represent the microsystem also as a SPICE compact
model netlist, and to extract the device netlist from the mask
and process description.

The above facts partly motivate our current work. We
therefore investigate methods to simulate entire microsys-
temns. We prefer methods that consider as much detail as pos-
sible. Since detail is provided by tools such as the finite
element method and boundary element method, we start
here. The size of the simulation is usually the limiting factor.

In the first section we consider mode] reduction tech-
niques [3]. For example, the physical dimensions of mi-
crosysiems make the characteristic response times of thermal
and mechanical phenomena comparable, requiring the cou-
pled analysis of the system. We present a general method to
investigate the frequency-domain behaviour of MEMS de-
vices thermo-mechanically excited by an AC heating power.
Characteristics of the method are the use of finite elements
for the space-discretization and speciral analysis for the re-
duction of mechanical degrees of freedom.

We investigate methods 10 interface the more exact “con-
tinuous” numerical models to SPICE. In the second section
we show how we generate consistent SPICE compact models
of capacitive devices using discretization methods [4]. Cur-
rently we use the adaptive, accelerated multipole boundary
element method to perform the spatial discretization. The ca-
pacitance matrix is extracted directly from the system matnx,
without solving the associated linear system.

MODEL REDUCTION TECHNIQUES FOR
THE FINITE ELEMENT METHOD

We consider a CMOS cantilever beam driven in reso-
nance using a harmonically varying heating power. Used as
a gas sensor, an adsorbing/absorbing thin film coating at the
beam tip causes a weight-proportional shift in the resonance
frequency of the beam [5]. The heat dissipated in a resistor
causes a temperature rise at the base of the beam. Different
thermal expansion coefficients in the beam sandwich lead to



a deflection of the beam.
Thermomechanical model

The behaviour of the beam sandwich is described using a
thermo-viscoelastic constitutive model [6]. The conservation
of momentum in 2 solid body is expressed by
pii = f+V-o 83

where u is the unknown displacement vector field, p is
specific mass of the body, and f is the resultant body force
vector field. In a thermo-viscoelastic solid the stress tensor
o is related to the strain tensor & through
O = Atrace(€) + 2U€ + Tytrace(g) + 2L&

30+ 20T - T) @

T and T, are the temperature distribution and the stress-
free temperature fields. The material parameters . and A are
the Lamé clasticity parameters, and 1 and { are the corre-
sponding viscosity parameters. o is the coefficient of ther-
mal expansion. The first order strain tensor & is:

e = [Vu+(Va)')/2 3)

The energy ba'ance is expressed in terms of the tempera-
ture T and thee. gy flux ¢ as

pc.T = -V-g )
where ¢, is the constant strain thermal capacity. The en-
ergy flux consists of the heat flux related to the temperature
gradient and that generated by the deformation work:
= —KVT+ (3L +20)aT ' (5)

Heat conduction gives rise to thermoelastic damping in
the system. Viscous forces account for the structural damp-
ing (internal friction). The weak form of equations (1), (2)
and (5) are now discretized using the FEM, leading to a set
of ordinary differential equations with respect to time:

Mii+ Ru+Au-BT = F), )

CT-Di+KT = Fy 0

We use the symbols # and T to denote the nodal dis-
placement and temperature in the discretized system.

Harmonic Analysis

Harmonic analysis is used for the numerical investigation
of the dynamic behaviour of the discretized system described
by (6)-(7). The thermal harmonic analysis presented in [7] is
generalized for the fully coupled equations of linear thermo-
mechanics. Inserting the sinusoidal excitement

Fplt) = Fpue?™, Fpls) = Fre'™ (8)
and the response
ut) = ue™, 7@) = TS ©)
into the system (6)-(7) results in the algebraic equation
A- m2M+j0)R -B [ujs = FM (IO)
-joD  joC+Ki|T] |F;

The order of this linear nonsymmetric complex-valued
system is 4N , where N denotes the number of computational
nodes. Equation (10) is solved for the amplimude and phase of
the displacement and temperature for variable @,

Reduction by Spectral Analysis

Considered separately, the discretized, free, undamped
mechanical system is characterized by the following set of or-
dinary differential equations

Mié+Au =0 (11)
Assuming harmonic time-dependence of

u(e) = u e (12) .
and inserting (12) into (11), yields

-0 Mu,+An, =0 (13)

The solutions #; of this equation are the eigenvectors of
the mechanical system, the shapes of the modes of free vibra-
tion at the eigenfrequencies w, . The beam excitation frequen-
cles are of the order of the first few modes, so that the
mechanical system is well approximated by the lowest
modes. The solution vector for the mechanical displacements
is written as a superposition of the first » mechanical modes:

u = zvz‘":' (i4)
=1 .
Inserting (14) imto the Fourier-transformed thermome-
chanical equation (10) vields
n ,
S vi(w; ~ @’ )M + jR)u;+ BT = F,, (15)

i=1

Aslongas n <3N this equation system has more equations
than unknowns v;. It is now projected onto the subspace
spanned by the selected eigenmodes, yielding

My +BT = Fyr = u)F), o (16)
where the reduced matrices M and B are
My = ul(e] - 0" )M + jRIx, a7
é;j = ll?—I'DWJ{B) (18)
For the thermal equation (11), it suffices to insert (14)
i
(JoC+K)T~jo vDu; = Fy. (19)
i=1
With the redoced matrix
b,-j = row(D)u ; 20

and combining (16}, (19) and (20}, we get

ﬂiJ E }l:v] = i’M (21)
D (joc+ KTl  |Fr

The number of unknowns is drastically reduced from 4N
to (N+a) . Equation (21) is solved several times in a fre-
quency sweep for w, so that this form of spectral analysis re-
sults in a large saving of computational resources.
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Figure 1. Computed beam tip amplitude as a function of
excitation frequency for a heating power of 200mW . The
first five thermally-excited coupled mode shapes are shown.
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Figure 2. Computed (lines) and measured (+ symbols)
normalized beam tip amplitude as a function of excitation
frequency. The items 1) to 4) indicate the influence of an in-
crease in parameter values on the shape of the response.

The computed fundamental frequency matches the meas-
ured values. The frequency response of the defiection a1 the
tip of the beam is plotted in Figures 1 and 2, for the range of
angular frequencies covered by the reduced mechanical
spectrum for a heating power amplitude of 200 mW. We ob-
serve the following dependence of the mechanical response
to device parameters (Figure 2): 1) The curve is shifted along
the amplimde axis upon changing the heating power.
2) Changing the mechanical parameters shifts the entire
curve along the frequency axis. 3) As expected, the width of
the resonance peak depends on the beam’s Q-factor, and

therefore characterizes the damping . 4) The mismatch of
the thermal expansion coefficients in the bimorph beam

changes the slope of the response curve between the resonant

peaks. The figure of merit in designing the resonating beam is
the ratio of amplitude to heating power «,/P [8]. Given the

geometry, the material parameters, and the Q factor, we now

correctly compute the amplitude/heating power ratio.

COMPACT MODELS USING THE
BOUNDARY ELEMENT METHOD

Curent commercial tools for capacitance matrix extrac-
tion are based on the finite difference method (FDM) [9], the
finite element method (FEM) [10], the finite volume method
(FYM) [11], and the boundary element method (BEM) [12],
[13], [14], [15], [16]. We limit the discussion to capacitance
matrix extraction, however all results are equally applicable
to resistance matrix extraction. In essence, each of the above
tools employ the following algorithm for the extraction of the
capacitance matrix:

Mesh the 3D geometry. The mesh introduces nodes, posi-
tions where the primitive variables are approximated. For
electrostatics, the primitive variables are often chosen to be
the nodal electrostatic potentials and the nodal fluxes (or sur-
face charge densities).

Build a discrete linear system. The partial differential
equation is projected onto a solution subspace using the

. weighted residual method. This results in a linear equation

system, Ay=b, in terms of the unknown primitive variables y
at the discrete node positions.

Solve Ay=b once for each row of the capacitance ma-
trix. For a geometry with m separate metallic conductors,
solve m times. For solution j (j=1,..m}, the conductors i (i =
1,..,m) are biased as q;,;,-:ﬁl-j Volt. The capacitance matrix val-
ues are extracted by integrating the computed surface charge
densities over the surface of each conductor.

It is not necessary to solve the linear system Ay=b. The in-
formation on the capacitance matrix already resides in the lin-
ear- system acquired using any of the above discretization
methods, The linear system appears to be most efficiently ob-
tained using the adaptive multipole accelerated BEM. This
version of the BEM is hence used in the following work.

Other Work

It is possible to form a reduced-order compact model for
the impedance (including inductance) directly from a 3D
magnetoquasistatic discretization using a Krylov-subspace
based method [17]. This approximation is accurate within a
given excitation frequency range. Such a step is necessary
when the initial physical model includes both resistive and re-
active effects, leading to a complex-vaiued impedance. Alter-
natively, tensor analysis of networks applied to the partial
element equivalent circuit (PEEC) [18] method can also be



used to achieve model reduction [19].
Direct Method using the BEM

The direct method of capacitance extraction proceeds ac-
cording to the foliowing algorithm:

Mesh the geometry. Using the process emulation meth-
ods, we compute geometry of the device and remesh for a
minimal geometrical dielectric interface representation [20].

Build the linear system. With the adaptive multipole ac-
celerated boundary element method we compute the coeffi-
cients of the linear system relating nodal voltages to nodat
surface nommal flux densities [21].

Eliminate internal variables. We eliminate the non-con-
ductor variables from the linear system. The variables arise
at inter-dielectric boundaries, homogeneous Neumnann
boundaries and from the intermediate variables of the
multipole expansion.

Compact the system. We compact the linear system into
a capacitance matrix using linear algebra techniques.

The BEM, including adaptivity [21] and multipole accel-
eration [14], results in the following discretized linear systemn
for the electrostatic problem
Hy = Gg : (22)

where G and H are square numerical coefficient matrices,
W is a vector of nodal electrostatic potentials and ¢ is a vector
of nodal .surface flux densities. We reorder and partition y
and g, grouping the nodal variables that belong to each of the
m conductors together

T r
H[W, - Vo = Glay ... ap] (23)
We introduce two new m-dimensional vectors, the con-
ductor voltage vector V and the conductor charge vector Q.
The relationships between V and v, and between Q and g, are
as follows:

oY = [y, - v

Q= Nig, ... 4, (25)

The block diagonal rectangular matrix D is boolean and of
dimension (mxn), marking the association of a2 mesh node
with 2 conductor. The rectangular matrix N is a weighting
matrix of dimension (n x m) . Its entries are the area weights
a; for each node i, (i=1,...,n), so that the product Ng forms the
area integral of the charge density over the conductor surfac-
es. We define the inverse relationship of (25) using the psen-
doinverse of N [22]:

g @4
T

T -
(41 0, = AN ho = N (26)
We insert (26) into (23) to get
HDV = GN'g _ @7

The matrix product GN* is rectangular, and we also Te-
quire its pseudoinverse:

(6N = «onty ony (6N (28)
Inserting (28) into (27) we get

(GNYY'HDY = 0 (29)
or equivalently

CV=0 (30)

+ . . .
where C = (GN") HD is the capacitance matrix for the
m-conductor system relating conductor voltage to conductor
charge,

Arbitrary boundary conditions and dielectrics

In the BEM for electrostatics, each mesh node corresponds
to only one boundary region. The regions and their nodes
have the following characteristics:

Dirichlet Boundary Regions. All the member nodes have
the same prescribed conductor potential.

Neumann Boundary Regions. All the member nodes
have the same prescribed surface-normal flux dens:ty {or sur~
face charge density).

Floating Boundary Regions. All the member nodes have
the same conductor potential, with a prescribed total charge
on the conductor.

Interface Boundary Regions. The member nodes lie on
interdielectric interfaces with known flux-potential relation.

Dirichlet and Floating boundaries are dealt with by the
method of the previous section, by choosing an appropriate D
and N matrix.

Homogéneous Neumann boundary conditions are useful
devices to reduce the size of simulation geometries with in-
herent symmetries. These variables are eliminated from the
equation system as detailed for internal interface boundary re-
gions described below. Inhomogeneous Neumann boundary
regions are not considered in our formulation.

Left Boundary Variables

amablcs
Left Boundary V; Hpaap = (Fy—dp

¥p.qp) = (9. 44)

(W) = (¥ aq)

oppgrp = (Wyeq3) )
f Bou Left Boundary Variables

Left Boundary Variables

Figure 3. Partitioning into left, right and interface bound-
ary regions.

To eliminate the variables lying on an interdielectric
boundary region we first partition the simulation domain, and
hence the equation system, to separate the interface, left and
right variables (Figure 3). Here we ireat a simple geometry,
but the discussion is equally valid for geometries with multi-
ple interfaces and domains, since interfaces are eliminated se-



quentially from the equation system. ,
For the Left domain boundary integral, relating the Left
and Interface boundary variables, we get:

Hyy Hyg [‘Pi - |Gu Gl |4y ' 31)
Hy Hyl v Gay Gy |43

For the Right domain boundary integral, relating the Right
and Interface boundary variables, we get:

H22 H23 wl = Gzz G23 92 (32)
Hyy Hy) Wy Gy Ga3||ay

Joining the systems for the Left and Right domains we
get:

Hyy 0 Hy » Gy 0 Gy 2
1 1
0 fiy Biy|| )| 0 G Gyl )
Hy O Hyli'% |Gy 0 Gyl
A& g3
| 0 Hy Hy 0 Gs G

Simplifying, the reduced system becomes

Iy T v _ |50 Eeile (34)
Ay ~Hypi ¥y G5 =Gy |42 _

with

-le
iy = (G~ HysH53G3)(Hy -

)

-1
HyyHyHy)
Tp=~(Hy- HoyH33H3y)(Gys ~ HysHiy Gg)
=11 = (Gs - HnH33G55)(Gy, ~ HyzHyGay)
Zi2 = Gy~ HyH; 3G3)(G 3~ H\3H3Ga)
Note that the effort to produce the reduced system is di-
rectly related to the size of discretization of the interfaces.

The efficiency of the method depends on keeping the discre-
tization of the interfaces to a minimal size.

Eliminating multipele expansion variables

The multipole expansion [14], employed in our algorithm
introduces additional intermediate variables into the bound-
ary element formalism which must be eliminated from the
system. Let x denote the flux and potential variables, a the
auxiliary variables introduced by the multipole expansion;
the system reads -
. Apnx+Apa=0 (35)

Agx+Apa=0

The hierarchy of the multipole expansion algorithm re-
sults in a lower triangular A,, mamix, so that the auxiliary
variables are easily eliminated from the system. Taking the
Schur complement of the block A,,, system (35) is trans-
formed into _

(A -Apdnay)x = 0, _ (36}

where the cost of the computation of A3,4,, is that of one
back-substitution times the number of columns of A,, .

Results

Figure4 . Surface mesh of the CMOS MEMS micromirror
suitable for simulation with the boundary element method.
The red dots indicate the nodes (collocation points) of each el-
ement of the mesh. The mesh represents 2120 quadrilateral
panel elements, 2414 collocation nodes, 5088 multipole vari-
ables and ca. 5x10° non-zero matrix entries 163, [20].

We consider a MEMS micromirror, fabricated using an in-
dustrial CMOS process combined with post-CMOS mi-
cromachining [23]. The aluminum mirror, suspended by two
beam hinges, is actuated to rotate about the hinges using elec-
trodes placed undemneath the mirror surface. Two additional
landing electrodes prevent the electrostatic adhesion of the
mirror to the substrate. The generation of the computational
geometry iHustrated in Figure 4 is dealt with in [21]. We com-
puted the capacitance matrix for the mirror for a range of mir-
ror deflection angles from 0° to 4.1° and plotted in Figure 5.
Computing the 5 x5 capacitance matrix using the compac-
tion method presented here requires an average of 824 sec-
onds on 2 SPARC Ultra 2 workstation.

z; ~ _Schemaric section through mirror i _ .
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Figure 5. Plot of the first row terms of the capacitance ma-
ix vs. angle for the CMOS MEMS micrormirror.



CONCLUSIONS

Numerical techniques such as the finite element method
and the boundary element method are powerful tools with
which to investigate. the nonlinear, time-dependent behav-
iour of coupled physics in MEMS devices. Microsystems
consist of these devices, together with circuit elements and
packaging solutions. The whole ensemble can have complex
cross-talk mechanisms which must be understood when de-
signing reliable microsystems. We investigate methods to
bridge the gap between the “continuous” numerical methods
and the compact “discrete” network simulators. We have
performed the coupled harmonic analysis of a thermome-
chanically actuated gas sensor under development in our lab-
oratory. Our method uses finite elements for the space-
discretization, and spectral analysis for system reduction. We
routinely investigate the frequency-domain behaviour of
MEMS devices excited by an AC heating power, and correct-
ly determine the amplitude/heating power ratio, given the
damping factor, the geometry, and the material parameters.
The capacitance extraction method detailed here exploits the
accuracy of the boundary element method to compute the
compact model influence matrix of a multiconductor inter-
connect directly, without resorting to explicitly solving the
linear system. The method works for arbitrary geomerrical

configurations in-2 and 3 space dimensions, with an arbitrary

number of dielectric materials, prescribed voltage conduc-
tors, prescribed charge conductors and symmetry planes.
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