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In this paper, an approximate agalytical solution I LLL L T
is presented for the diaphragm'’s deflection based on energy _ /! /
minimjzation, through the use of a polynomial solution v
technigue. Thanks to this method, we obtain not only the b|/] - s = ?
center deflection, but also the entire position under / ¥ * R x
pneumatic pressure. thereby making it possible to compute
the diaphragm's deflected volume Regarding the
geometrical and physical parameters, three cases can be 4 %/

distinguished. with the diaphragm: acting as a pure plaie,
acting as a pure membrane, or exhibiting the effects of
both the elastic rigidity and the initial internal stress. For
these three cases. a standardization of the diaphragm's
behavior enables obtaining an abacus that can then be used
for any geometrical or physical parameter. In order to
validate this approach, some comparisons with other
methods are performed. This energy-based aporoach has

Figure 1: Geometry of the diaphragm

There is no simple analytical solution to
equation (1). The solution can thus be obtained with FEM
simuiation or approximate solution methods. In order to
derive a parametric solution, we have opted for the
approximate  solution method based on ENErgy

been exiended to electrostatic actuation and vields more funt o _
general results than do other more classical methods (e,
the spring model). Lastly. a behavioral comparison of both ENERGY MINIMIZATION
the membrane and plate cases is presented for a X .
conformable mirror with electrostatic actuation, The deflection w(xy) of a diaphragm under
pressure p(x.y) comesponds to the diaphragm position that
k - di : . ; has the minimum total energy. We have chogen 10
eywords: diaphragin, pneumatic, electrostatic, deflection approximate this deflection by 2 linear combination of
INTRODUCTION polynomil functions ,:
n
LY) = £ 2
In this paper, we consider a built-in diaphragm wixy) Eal {x3) @
(Fig. 1) characterized by its thickness h, its width a, its Let U, represent the total enersy of the
length b, its elastic flexoral rigidity D, =E/12(0-VY), diaphragm; the deflection is then obtained with the n
where E is the Young’s modulns and v the Poisson’s coefficients a, , solutions to the n equations:
rato, and its initial internal stress T,. The deflection au,, ~
under pressure p(x.v) has been denoted bv w(xy). The Ba, =0 &)
study presented below is limited to small deflections
(w<h).

Energy Calculation

The classical law governing the diaphragm's o .
behavior under such assumptions and notations is [1]: The total energy of the diaphragm is composed of two

terms {2]:
3 * the potential energy due to pressure acting on
DorAAw(x,y) - T,hAw(ey) =pxy) (1) he diaphmgm:po - & P s
b2 an? fw
& & U= | | (f p(x,y)dw) dxdy @
where: A=——4— -b/2-2/2 \0
o ov

* and the potential internal energy due to both the
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clastic flexural rigidity D, and the initial internal
stress T,

Uinr = UDo + UTo (5)
with:
12 a2
Us. =5 | [Doh(aaw(x,y)) wix,y)dxdy (6)
=172 ~af2
and:

by

i
2.,

3

ufl

[ Th{aw(x,y) Jwix vydxdy  (7)

U,

Therefore, the total energy can be expressed as:
Uror = Ue.\'t + Uim = Ue;\'t + U-.Da + U’l"c (8)

Coefficient Calculation

Given the expression for the total energy, the n
equations (3) can be combined into matrix form, as
follows:

duU

int = ay ext

da, 1 da,

H

®

where:

* dUi,/da; is a (nxm) matrix that contains, for
each row °{” - column j* pair, the second partial derivative
of the U, energy with respect to the ‘ith’ and ‘jth*
coefficients. It should be noted that this matrix is not
dependent upon the tvpe of excitation, Instead, it depends
solelv upon the approximate functions 1.

* ais a (nxl) vector that contains the n
coefficients a, .

* dU_/da; is a (nx1) vector that contains the
derivatives of U, with respect to each of the coefficients
a,.

The coefficients a, can then be derived as

follows:
-1

v, au
a |=f L | 18Us 10
, >y = (10)

1

In this equation, the two matrices are dependent
upon the approximate functions f,. In the following
section. we will show that the number n and the choice of
the & functions both serve to determine the accuracy of the
results,

Choice of Polynomial Functions

to avoid the constraints of the
dimensions, the following variable

In order
diaphragm's

substitution is introduced: X =2x/a;: Y= 2y/b, with the

- origin being located at the center of the diaphragm:
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Xe[-11] and Y e[~L1]. The expression of the deflection
can then be written with the new variables:

WOLY) = S ARCLY) ay
where:
W Y)=w(@X/2.5Y/2)
and: (X Y)=1£(aX/2,bY/2)

The polynomial functions F must be in
agreement with the builtin diaphragm's boundary
conditions;

RELY)=FX#D=0 and HE2D &
C.

XD _
aY

The function F, has therefore been chosen with

the term (1-—){2)2(1—*1”‘)2 as a factor. Moreover, since

only svmmetrical actuation is being considered, the

approximate functions must be even. The simplest

functions corresponding to these criteria are B3I
(1~ X5 (1- Y2y Xiyx

with j and k being even numbers.

(12)

If the numbers j and k were to increase, the
polynomial functions would get shifted towards the edges
of the diaphragm Thus, from Fig. 2 (with all of the
function maxima being taken as equal to 1), we can
observe that it is not necessary to use many functions of
this type, in that the functions corresponding to high
polynomial orders will be of little significance in the
deflection's estimation.
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Figure 2: Section of the simple polynomial functions: Y=0

In order to compensate for the Iack of functions in
the intermediate zone between the edge and the center, we
propose employing other pelynomial functions:

(1 - X2)2+r\1 (1 - Y2)2+nm le Y2m {13)
with:  (Lm) €{(0.),(L0), (L)} and n being an even
number.



For the following simmlations, we have considered
34 F functions:

* 25 of the first type (equation (12)), with
je{0:2;4:6:8] and ke{0:2:4,6;8}; and

* 9 of the second type (equation (13)), with
ne{2:4:6} and (L.m) e{(0.1), (LO). LD}

In order to visnalize the area corresponding to the
localization of the functions, the contour of the various
F, functions has been plotted in the [X.Y] plane, with the

maxima taken as equal to 1 for each function and with a
contour vatue equal to 0.98 (see Fig. 3). The gray areas
correspond to valuss of less than 0.98 and the white areas
to values of greater than 0.98. The first type of functions
have been indicated by solid lines and the second type of
fonctions bv dashed lines.
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Figure 3: Contour of the F, functions (Himit = 0.98)

Fig. 3 demonstrates the advantage of using
functions of the second tvpe (in the intermediate zone)
instead of a greater number of functions of the first type
(placed along the edges).

PNEUMATIC ACTUATION

In the previous section, a methodology for solving
equation (1) was presented. The result with respect to the
deflection under pneumatic pressure
(P(x.¥)=constant = P;) depends om the diaphragm's
geometrical characteristics (h, a and b) as well as on its
physical parameters (D, and T, ). In this section. the case
of the plate (the opposite force due to T, is negligible) and
the case of the membrane (the opposite force due to D, is
negligible) are to be examined first. Once these two cases
have been taken into consideration, the deflection can then
be standardized. Afterwards, we will show that, for some
determinate diaphragm configurations, these two simpler
cases cannot actually be applied. For sach configurations,
another standardization procedure has thereby been
proposed.

Plate Behavior

In this case, equation (1) becomes:
D W AAW(R,¥) = P, as

This equation is equivalent to:
r BANAD +2 342ND2 +i2 34N4D
[2)4 gX'eY" 1 &Y

=1 (15)
with:
s NpX Y =WXY)/C,
.~ . BS
"7 16D, K
*r=b/a

Thus, for a given rectangularity (r being fixed),
the solution to equation (15) with the method presented in
this article's "energy minimization® section is sufficient in
order to determine the deflection for each geometrical and
physical parameter. The product of the solution Ny ZEY)

to equation (13) and the value of C, is in fact th
deflection W Y). '

In Fig. 4, the solntion NL(0.,0) to equation (15)
has been plotted versus the value of the rectangularity 1.
Moreover, we have plotted in the same figure some of the
results published by other authors [4] as well as some FEM
simulations performed with the software ANSYS. A very
high level of agreement has been observed between our
method's results and those based on other methods. This
encouraging result serves both to validate the solution
method presented herein and to apply it to a more complex
case: electrostatic actuation.
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Figure 4: Evolution of N,(0,0) versus

Membrane Behavior

In this case, equation (1) becomes:
-Thaw(x.y) =F, (16)
The same standardization as that employed in the
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plate case can be performed for the membrane; equation
(16) is then equivalent to:

. FN. 18N,

4 — =]
ot 1 8Y° G7)
with:
. NT(X.Y)=W(X_.Y)/CT
. _ B,S
Cr'4’1"011
*r=b/a

Thus. like for the plate case, the solution to
equation (17) by the method presented in the "energy
minimization" section and the calculation of the C; value
are sufficient in determining the total deflection of the
membrane. The standardized resuit for the center
deflection, N.(0.0), has been presented in Fig, 5.
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Figure 5: Evolution of N.(0,0) versus r

It is obvious that in this case, the solution method
presented herein is in agreement with other results I5]:
hence. this solution principle can indeed be applied to the
electrostatic case.

General Case

As for the two previous cases, in order to obtain a
standardized result, equation (1) can be written as follows:

2N, (XD~ R AN, (XD=1 (8)

with:
* N, XV =WXKY)/C,

In Fig. 6. the result obtained in the square-shaped
diaphragm case has been presented for the center point. As
opposed to the two simplified cases {(plate and membrane),
in the general case. the solution depends upon both the
Tectangularity r and the parameter C,/C, .
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Figure 6: Evolution of N_(0,0) versus C,/C,

Fig. 6 demonstrates that for some ranges of
Cp/C; , the diaphragm can be considered either as a plate

or as a membramne. In the following section, we will
examine whether the general case (over the entire C,/ C;
range) can be deduced from the two simplified cases (plate

and membrane).

Determination of the simplest solution for each
case

It has already been observed that the deflection
under pneumatic actuation can be casily solved and
standardized into two limit cases (plate and membrane).
Next, we will determine under which conditions a
diaphragm can be comsidered as either a plate or a
membrane.

In the two limit cases, the deflection of each point
(X.Y) can be written as the displacement of a spring with a
stiffness K(X,Y), such that:

WX, Y) =P, /KX V) 19)
with KX V) =K, (X Y)= -C_I—V:-I(_X:—Ys in the plate case,
pNpla,
and KX Y)=K;(XY)= m in the membrane
T

case.

As an initial consideration, if we were to assume
that no coupling occurs between the flexural nigidity and
the internal stress during deflection, the general case could

 then be modeled by two parailel springs (K, and K.) (see

3

Fig. 7).

Po .
e Y

Figure 7: Modeling of both the elastic flexural rigidity
D, and the initial internal stress T,



The deflection expression would then become:
W) = — P - _CoNp(KVCNXY)
K:+Kp  CpNp(LY) +CoN.(X, Y)
H Kg,>>K;, the diaphragm can thus be
considered as a plate: W Y)=CN(XY). If
Kr>>K,. the diaphragm can be comsidered as a2
membrane: W(X,Y)=C N (XY). And if X, ...KD, the
expression in equation (20) must be used,

(20)

In Fig. 8, we have plotted the relative error
encoutttered for the center deflection as obiained in the
three cases (plate. membrane and two parallel springs)
with respect to the general solution to equation (1). Fig. 8

corresponds to a square diaphragm (r=1).
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Figure 8: Relative error for the three different case-spemﬁc
solutions with respect to the generat sohution versus

Cp/C; for a square diaphragm

Once the limits of an acceptable error have been
set (e.g.. at 2%), Fig. 8§ than enables determining the
individual areas (depending ua the value of C,/C, ) where

the plate. membrane, two parallel springs or general
solution nrust be applied.

ELECTROSTATIC ACTUATION

In this case. the pressure acting on the diaphragm
is not constant. but rather depends on the deflection. An
clectrode is placed in front of the diaphragm at a
distancze. and a voltage U is applied between the
diaphragm and the electrode. An electrostatic pressure
P.(X.Y) isthen created:

P

PX YY) — 21
0 (- WELY)/e) =

g2

with: By=—, and ¢ is the permeability of the space
o

between the electrode and the diaphragm. ‘

In this section, we will focus our presentation on a
square plate. This particular study approach can also be
applied to 2 membrane or a diaphragm,

In this case, equation (1) is equivalent to:
CI‘

AAN, = ——————
SRS 2
with:
N Y)= WX Y)/e
= _ﬁz__ﬁ
16D ke

For a fixed value of C' thersfore, only one
solution for N, actually exists. Once N (XY) has been

- identified as a function of C', deducing the value of

W(X.Y) for all plate characteristics is thus made possible:
WK, Y) = N (X.Y), @3)
In terms of pneumatic actuation, the deflection
can be deduced from the abacus. In this case however, for a
given rectangularity (r being fixed), simulations with
several C' values must be run. C' Hes between O and the
value corresponding to the plate center’s pull-in.

To obtain the N, evolution with respect to C',
the energy minimization method has once again been used.
Furthermore, we have developed an iterative calculation
procedure to determine the coefficients a,. At each
increment of the calculation, the new position is integrated
into the pressure in order to converge towards the solution.

Fig. 9 presents the standardization of the center
deflection, N,(0,0). Other authors [6] have classically
presented the limit prior to the pull-in effect as a
displacement corresponding to one-third of the e value. In
this instance, using the energy-based method, we have
obtained a limit displacement that cotresponds to a larger
value than the displacement for which C' is equal to 11.
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Figure 9: Evolution of N_(0,0) versus C' for three
different models



A comparison with two more classical methods
has been performed in Fig. 9: one method considers the
pressure to be constant, while the other models the
membrane by using independent constant springs [7]. It
appears that for verv small deflections, the pressure can
indeed be considered as a constant. For larger deflections,
the model based on independent springs is appropriate in
order to understand and estimate both the pull-in and puil-
out effects. However. for high voltages, the pull-in effect
changes the svstem's behavior, and. at this point, the
spring model is no longer sufficient in producing an
accurate simulation (in terms of both the capacity
estmation and the estimation of deflected volume).

The same curve can be derived for the volume
corresponding to the membrane's deflection. In this case,
we have 1o simulate for a higher vatue of C’ than the value
used for C'yyy,. This simulation also proves more

complicated in that the contact between one electrode and
another electrode in the presence of both an insulator and a
contact force must be integrated.

USE OF RESULTS

In order to compare the plate and membrane
behavioral patterns. a simulation of a conformable mirror
with electrostatic actuation has been carried out. It has
been observed that a diaphragm can be considered, under
certain conditions, as either a plate or a membrane, Hence,
It may prove interesting to cornpare the deflection obtained
in these two cases as a means of determining the material's
influence.
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Figure 10: Deflection of a plate with 4 electrodes

We can note the different behavioral patterns of
the diaphragm in the two limit cases. In order to generate a
complicated deflection. it is advisable to use a membrane
rather than a piate. A membrane actually reflects the
structure of the electrode to a greater extent than does a
plate. which vields a smoother deflection.
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Figure 11: Deflection of 2 membrane with 4 electrodes
CONCLUSION
We have presented herein an energy-based

solution method for obtaining the deflection at each point
of a diaphragm. Both plate and membrane behavioral

- patternis can be easily derived and standardized. Therefore,

in each of these two cases and with a fixed rectangularity,
only one solution is needed in order to determine the
deflection for every geometrical {size, thickness) and
physical (applied pressure, flexural rigidity or initial
internal stress) parameter. We have also presented the
limit for these two cases and the solution technique for the
general case using the same standardization principle, This
solution method was then applied to the more complicated
case of electrostatic actuation. With this actuation, we
developed a standardization of the deflection as well as an
abacys that allows easily identifving the deflection for both
cases. Lastly, the very distinct behavioral patterns
associated with the plate and membrane cases were
exhibited through a study performed on a2 conformable
electrostatic micromirror.
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